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Abstract. Ocean eddies can both trigger mixing (during their formation and decay) and effectively shield water encompassed

from being exchanged with ambient water (throughout their life time). These antagonistic effects of eddies complicate the

interpretation of synoptic snapshots as typically obtained by ship-based oceanographic measurement campaigns. Here we

use a coupled physical-biogeochemical model to explore biogeochemical dynamics within anticyclonic eddies in the Eastern

Tropical South Pacific ocean. The goal is to understand the diverse biogeochemical patterns that have been observed at the5

subsurface layers of the anticyclonic eddies in this region. Our model results suggest that the diverse subsurface nutrient

patterns within eddies are associated with the presence of water masses of different origins at different depths. The water mass

diversity responds to variations with depth of the circulation strength at the edge of the eddy.

1 Introduction

Satellite-based measurements have revealed strong correlations between sea surface height and ocean colour (e.g. Cipollini10

et al., 2001). Most of these correlations are related to nonlinear mesoscale eddies which shape a distinct biogeochemical

environment that differs from ambient surrounding waters (e.g. Chelton et al., 2011). Processes proposed to shape distinctly

differing environments in energetic mesoscale eddies include eddy vertical transport such as pumping during the formation

and intensification (decay) of cyclonic (anticyclonic) eddies (e.g. Jenkins, 1988; Falkowski et al., 1991), and eddy/wind effects

driving upwelling in anticyclonic eddies (e.g. Martin and Richards, 2001). Common to these processes is that they have been15

proposed to enhance near-surface vertical transport and thus increase the availability of essential nutrients in the sun-lit surface

ocean (although basin-scale effects are discussed controversially e.g. Oschlies (2002); Eden and Dietze (2009)). Another trait

of eddies, somewhat antagonistic, is their role in lateral transport processes. Eddies can enclose water parcels and effectively

shield them from being mixed with ambient waters for months (e.g. Dietze et al., 2009). This can render the interpretation

of synoptic snapshots, such as obtained by ship-based oceanographic measurement campaigns, problematic because local20

conditions encountered may well be the result of processes hosted hundreds of miles away in the past rather than being effected

locally and contemporarily which, in turn, can obscure causal relationships.

This study sets out to investigate, if and to what extend standing stocks of biogeochemically relevant species are decoupled

from local contemporary processes in eddies in the Eastern Tropical Pacific (ETSP). The region is known for oxygen-deprived

waters at intermediate depth that host anoxic biogeochemical cycling of organic matter such as denitrification and anammox25
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– both of which are key to setting the global inventory of bioavailable nitrogen that is essential for phytoplankton growth. A

recent survey in the ETSP oxygen minimum zone (OMZ) revealed strong correlations between mesoscale eddies and subsurface

nutrients (Altabet et al., 2012; Stramma et al. , 2013). Specifically two anticyclonic eddies were identified associated with both

low and high nitrate concentration in their centre. As concerns the low-nitrate eddy, Stramma et al. (2013) corroborated the

suggestion put forward by Altabet et al. (2012) that the nitrate deficit is caused by local denitrification and/or DNRA. As for the5

high-nitrate eddy, the authors speculated that the nutrient anomaly is related to the initial concentration at the time and place of

the eddy formation. We speculate that a more comprehensive analysis of eddies in the region, which explicitly considers their

life history, will provide new insights. To this end we will apply a coupled, eddy-resolving ocean circulation biogeochemical

model of the ETSP. Eddies similar to those observed by Altabet et al. (2012) and Stramma et al. (2013) will be analysed. The

focus is on nutrient dynamics and water mass properties within the eddies throughout their lifetime.10

2 Methods

We employ the Regional Oceanic Model System (ROMS, Shchepetkin and McWilliams (2005)) to simulate the dynamics of the

ETSP ocean. This free-surface and terrain-following vertical coordinates model (Shchepetkin and McWilliams, 2005) allows to

allocate high resolution in the surface and coastal regions, that are crucial for the biogeochemical processes. The ROMS model

is coupled with BioEBUS (Biogeochemical model for the Eastern Boundary Upwelling Systems) to simulate the first trophic15

levels of the food web and the biogeochemical dynamics. A complete description and validation of the BioEBUS is presented

in Gutknecht et al. (2013). The first trophic levels of BioEBUS model consist on small (flagellated and microzooplankton) and

large (diatoms and mesozooplankton) organisms. The flagellates differ from the diatoms by their adaptation to low nutrients

and stratified conditions, as well as their better assimilation efficiency for nutrients. The BioEBUS model is a nitrogen-based

model that accounts for denitrification, nitrification and anammox. Nitrate, nitrite and ammonium are prognostic variables.20

The model has been developed to resolve the biogeochemical processes of the eastern boundary upwelling systems under oxic,

hypoxic and suboxic conditions.

We employ a 2 ways-nesting procedure (Debreu et al., 2012) to embed a small regional domain within a large-scale domain.

The large domain, extends from 69◦W to about 120◦W in longitude and from 18◦N to 40◦S in latitude. It features a horizontal

resolution of 1
4

◦. The embedded domain features a high resolution grid of 1
12

◦ and extends from around 5◦N to 31◦S in25

latitude and around 69◦W to 102◦W in longitude. Both domains feature 32 vertical levels. The underlying topography of both

large-scale and regional domain is derived from the GEBCO at 1 minute resolution (IOC, IHO and BODC , 2003).

The ROMS model is forced at the surface with monthly climatological fluxes of heat and fresh water from COADS (Worley

et al., 2005). Wind fields are from QuikSCAT (Liu et al., 1998). At its boundaries, the large scale domain is nudged toward

monthly climatological (1990-2010) SODA reanalysis (Carton and Giese, 2008). The BioEBUS model is constrained at the30

boundary with monthly climatological nitrate and oxygen from CARS (Ridgway et al., 2002). The phytoplankton boundary

condition is derived from the monthly climatological surface chlorophyll data from SeaWiFs (O’Reilly et al., 1998). This sur-

face chlorophyll data is then extrapolated vertically following the Morel and Berthon (1989) parameterization (Gutknecht
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et al., 2013). The lateral boundary conditions for zooplankton forcing is based on an analytical function, depending on the ver-

tical distribution of chlorophyll (Gutknecht et al., 2013). For the analysis in this paper, physical and biogeochemical dynamics

of the ETSP are averaged over 5 years of simulation, after a spin-up time of 25 climatological years

2.1 Model evaluation

Figure 1 shows the simulated physical dynamics of the ETSP along with respective observations. At the surface, the simulated5

surface eddy kinetic energy (EKE) is increased along the coast (Fig. 1-a). This pattern is in agreement with the observed surface

EKE derived from AVISO altimetry product (http://www.aviso.altimetry.fr/duacs/) over a period from 1993 to 2012 (Fig. 1-b).

The surface currents, namely the Peru Oceanic Current in the open ocean and the Peru Coastal Current (PCC), are visible

propagating north-westward, contributing to the westward South Equatorial Current (SEC, contours in Fig. 1-a,b). Along the

coast, the model solution shows a southward flow at the subsurface layers (Fig. 1-c,e), in agreement with the observations10

(Fig. 1-d,f, Chaigneau et al. (2013)). In the north, the southward Equator - Peru Coastal Current (EPCC) is intensified in the

upper 150 m depth (Fig. 1-c,d). This alongshore current is still present 150 km offshore, with velocities around 5 cm s−1.

Further south, the simulated subsurface Peru-Chile Under Current (PCUC, Fig. 1-e) is deeper (between 50 and 250 m depth)

and more intensified than the EPCC (Fig. 1-c,d). An equatorward flow inshore is also visible in the simulated dynamics

(Fig. 1-e) and is consistent with the observations presented by Thomsen et al. (2015). This equatorward flow is related to the15

northward PCC observed along the coast (Smith , 1986; Thomsen et al. , 2015). The equatorward current is observed between

the surface down to about 60 m depth. Despite the good representation of the alongshore currents, the model underestimates

the intensity of both the EPCC and the PCUC. This might be related to the low resolution of the boundary conditions used in

this configuration.

Figure 2 present the spatial distribution of simulated and observed biogeochemical dynamics. The simulated (Fig. 2-a) as20

well as the remotely sensed (MODIS) surface chlorophyll (Fig. 2-b, Zibordi et al. (2006)) show high concentrations along the

coast. The highest values are observed along the Peru upwelling region (between 5◦S and 16◦S), related to the upward transport

of deep nutrient-rich waters (Chavez et al., 2008). The simulated oxygen content at 400 m depth is relatively high around the

equator, which is consistent with the observed dynamics (Fig. 2-c,d). Vertically, the oxygen distribution shows less oxygenated

waters at intermediate depths (Fig. 3-a), in-line with observations (Czeschel et al., 2011, 2015). However, the thickness of25

these oxygen-depleted waters is thinner in the model solution. The simulated nitrate concentrations closely match the observed

vertical nitrate distribution, in spite of the fact that the deeper nitrate is underestimated in the simulated dynamics (Fig. 3-b).

The vertical structure of nitrite concentrations shows high values inshore and in the subsurface layer (Fig. 2-c). This is in

agreement with the observations (Fig. 3-f). However, the magnitude of simulated nitrite is lower compared to the observations.

This discrepancy can be related to the absence of sediment dynamics in this model configuration. The ammonium released30

from the sediments in this region (Bohlen et al., 2012) might be reduced into nitrite during nitrification processes, enhancing

the water column nitrite concentrations. Sedimentary dynamics might also influence both oxygen and nitrate water column

distribution. While there is no flux of matter through the bottom in the current model version, a subsequent modelling study

will investigate the coupling of benthic processes.
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2.2 The eddy identification

To analyse the source of nutrients within anticyclonic eddies, we identified two anticyclonic eddies types in the simulated

physical-biogeochemical dynamics (Fig. 4 and Fig. 5). Note that the patterns of the selected eddies are consistent with the in

situ observed biogeochemical patterns presented by Stramma et al. (2013). Once identified (from now on called identification

instant), we tracked the eddies backward in time and analysed their life history. An analysis of the eddy’s evolution into the5

future after the identification instant is also presented in this paper, allowing for a more complete description of the eddy life

history.

The determination of eddy shape is defined based on combination of closed contours of the sea surface height (SSH) anoma-

lies and the Okubo-Weiss parameter (José et al. , 2014; Halo et al. , 2014). The first method identifies the closed contour of SSH

(Chelton et al., 2011), according to the second, the eddy shape is defined as a connected region where the vorticity dominates10

strain, i.e where the Okubo-Weiss parameter is negative (Chelton et al., 2007). Combining the closed contours and the negative

Okubo–Weiss parameter allows to reduce uncertainties associated with either method (Halo et al. , 2014).

2.2.1 Subsurface low nitrate and high nitrite eddy (Asim)

Simulated eddy Asim is located at the southern part of the Peruvian coast, between 13◦S and 15.5◦S in latitude and 76◦W

and 78◦W in longitude (Fig. 4-a). This eddy presents oxygen-depleted intermediate waters in its centre, with values below 2015

µ mol l−1 (Fig. 4-b). Nitrate-reduced waters also appear in the centre of the eddy (Fig. 4-c), apparently indicative of on-going

denitrification within the structure, as suggested in previous studies (Altabet et al., 2012; Stramma et al. , 2013). At the edge

of the structure, the nitrate concentration is higher, suggesting an exchange with surrounding waters (Fig. 4-c). In contrast, the

nitrite concentration is higher in the centre and low at the edge (Fig. 4-d).

The eddy Asim is intensified from the surface down to 500 m depth, with maximum surface velocity above 30 cm s−120

(Fig. 4-e,f). At the identification instant, this eddy shows an asymmetric velocity distribution, with weaker strength of the

westward component than the eastward component (Fig. 4-f). Temperature and salinity show depressed isolines in the centre

of the eddy (Fig. 4-g,h), typical of a mode-water anticyclonic eddy. The mode-water eddies are suggested to trap and isolate

water from the surrounding environment.

2.2.2 Subsurface high nitrate and nitrite eddy (Bsim)25

The simulated eddy Bsim is an open ocean eddy, located between 12◦S and 14.5◦S in latitude and 84◦W and 88◦W in lon-

gitude (Fig. 5-a). This eddy also presents extremely low oxygen concentrations at intermediate depths in its center (Fig. 5-b).

The oxygen-depleted waters are enclosed by well-oxygenated waters from the eddy’s edge (Fig. 5-b). The eddy Bsim shows

increased subsurface nitrate concentrations in the centre and slightly reduced nitrate concentrations along the edge (Fig. 5-c).

The vertical structure of nitrite concentrations show isolated subsurface high-nitrite waters in the centre of the eddy (Fig. 5-d).30
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At the identification instant, also the flows around the eddy Bsim reveals significant asymmetries. Minimum velocities

are present in the eastward (surface) and westward (subsurface) flow components. This open ocean eddy shows elevated

temperature and salinity in the centre, characteristics of a mode-water anticyclonic eddy (Fig. 5-g,h).

3 Result and discussion

3.1 Local biogeochemical dynamics within the eddies5

In order to assess the contribution of local biogeochemical dynamics to nutrient variations within the eddy, we analyse here the

production and reduction rates of each nutrient at the identification instant. Figure 6 shows the vertical distribution of reduction

and production rates of nitrate (Fig. 6-a-b) and nitrite (Fig. 6-d-e) within the eddy Asim. The net production (production -

reduction) is also presented, for both nitrate (Fig. 6-c) and nitrite(Fig. 6-f). Below the surface of the eddy Asim„ the nitrate

reduction via denitrification (Fig. 6-a) is lower when compared to the production (Fig. 6-b), showing a net nitrate increase due10

to biogeochemical processes within the eddy (Fig. 6-c). Regarding the nitrite dynamics, production and reduction rates show

similar patterns. Below the surface, the nitrite reduction is slightly higher than the production (Fig. 6-d-f), suggesting that local

biogeochemical processes can not explain the accumulation of high nitrite values in the centre of this eddy (Fig. 4-d). Figure 7

shows the time evolution of production and reduction rates of both nutrients (nitrate and nitrite) within the eddy Asim. For

comparison, nutrient concentrations during this period are also presented. Both reduction and production of nutrients within15

the eddy do not show any trend that could explain the reduced nitrate in the centre of the eddy. The nitrate production is

higher than the reduction, showing a net increase of nitrate due to biogeochemical processes within the eddy Asim (Fig. 7-a).

But the magnitude of the locally produced nitrate is low compared to total changes in nitrate concentration during the eddy

propagation. Local nitrite reduction is higher than local production during the eddy propagation (Fig. 7-b). The pattern of local

net nitrite production is not correlated with the total changes in nitrite concentrations. These results show that the low nitrate20

(high nitrite) within the eddy Asim is not primarily controlled by local biogeochemical dynamics within the eddy Asim.

In the eddy Bsim, the vertical structure of production and reduction rates of nitrate show a net nitrate production in the

upper layers as well as at the edge of the eddy (Fig. 8-a,b,c). The local nitrate dynamics during the propagation of eddy Bsim

show elevated nitrate production in comparison to the reduction (Fig. 9-a). Although the net increase, the pattern as well as

the magnitude of the locally produced nitrate do not match with changes in total nitrate concentrations. The vertical structure25

of nitrite production also reflects elevated values in the upper surface layer (Fig. 8-d,e,f). Below the surface, nitrite reduction

dominates the local dynamics, with no difference between the centre and the edge of the eddy. The nitrite dynamics during

the eddy propagation show a local dominance of nitrite production within the eddy, which is inconsistent with the temporal

variations of nitrite concentrations (Fig. 9-b).

The inconsistency between local biogeochemical sources and sinks of nitrate and nitrite and total temporal changes of those30

nutrients within the eddies suggest that the biogeochemical dynamics do not exert the dominant control on the variation in

nutrient concentrations.
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3.2 Water mass properties within the eddies

One important aspect of eddies is their capacity to entrain surrounding waters during their propagation (Dietze et al., 2009;

José et al. , 2014). These dynamics have been pointed to stimulate the productivity within anticyclonic eddies (Dietze et al.,

2009; José et al. , 2014). In the eastern tropical ocean, eddies have been observed to carry low-oxygen waters out of the core

region of the OMZ (Stramma et al. , 2014; Karstensen et al., 2015). This make the analysis of the eddy life history essential5

for understanding the dynamics in the eddy interior. To resume on the origin of water masses present in the selected eddies, we

analyse the water mass properties within the structure and compared it with the surrounding environment at different instants

of the eddy’s lifetime (Fig. 10 and Fig. 11). Figure 10 presents the water mass properties within the eddy Asim. It shows

relatively warmer and saltier surface waters within the eddy compared to the surrounding shelf waters (Fig. 10-a-b). When

the eddy Asim was formed, the surface waters were even warmer and saltier, characteristic of offshore waters. During the10

propagation of eddy Asim, the water masses within the structure are mixed with colder and fresher coastal waters, resulting

in heat and salt loss (Fig. 10-c). However, water masses within the eddy are still dominantly from the offshore region. The

offshore region is a nitrate-poor environment, with minimum concentrations below 5 µ mol l−1 (Fig. 10-d). At 100 m depth,

water masses within the eddy are relatively fresher and cooler and do not match those of the offshore environment (Fig. 10-

e-g). Although roughly associated with shelf waters, the water masses within the eddy at this depth are saltier and warmer15

than those from the shelf. At eddy formation, the water masses within the eddy were even warmer and saltier, suggesting a

dominance of offshore waters within the structure. During the eddy propagation, the fresher and colder shelf waters entered the

eddy interior, resulting in a cooling and freshening of the water masses within the structure. As a result, shelf waters carrying

high nitrate concentrations dominate the eddy interior (Fig. 10-e-g). Further down (at 250 m depth), warmer and saltier shelf

waters dominate the properties within the eddy Asim (Fig. 10-1,j). At this depth, water properties are slightly modified during20

the eddy propagation (Fig. 10-k). Shelf waters, which have lower nitrate concentrations compared to the offshore environment,

are kept in the eddy centre and advected during the eddy propagation (Fig. 10-l).

The water mass properties within the eddy Bsim are presented in Figure 11. Located far from the shelf region, the water

masses within the eddy Bsim are distinct from those from the shelf. At the surface, relatively cooler and saltier waters occupy

the eddy interior (Fig. 11-a,b). These waters match those from the south, which are propagated northward by the eddy. During25

the eddy propagation, mixing with the warmer northern waters increases the eddy surface water temperature (Fig. 11-c). This

intrusion of warmer waters can also be seen from the limb of warmer waters at the north-western side of the eddy (Fig. 11-b).

These dynamics are also visible at 100 m depth (Fig. 11-e,f,g). At this depth, warmer and saltier southern waters enters the

eddy interior and are mixed with the fresher and colder northern waters. However, only relatively small changes occurs during

the eddy propagation (Fig. 11-g). Consequently, nitrate-poor southern waters are trapped within the eddy (Fig. 11-h). The weak30

water mass exchange with surrounding waters during the eddy propagation is also visible at 250 m depth (Fig. 11-k). At this

depth, warmer and saltier northern waters dominates the eddy interior (Fig. 11-i,j). These waters are rich in nitrate (Fig. 11-k),

explaining the elevated nitrate in Figure 5. The weak water mass exchange between the eddy and environment (Fig. 11-g,k)
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combined with the meridional temperature and salinity gradient (Fig. 11-e,f,i,j), suggests that the eddy Bsim driven mixing is

not strong enough to overcome the thermohaline front.

4 Conclusions

Recent studies have suggested an important role of eddy dynamics in controlling nutrient distribution and biogeochemical

dynamics in the OMZ of the ETSP (Altabet et al., 2012; Stramma et al. , 2013). Eddy features have been suggested to in-5

duce changes in the subsurface nutrient dynamics, which may lead to N-loss, likely to induce changes in productivity and

subsequently the oxygen distribution. Using a coupled physical-biogeochemical model, we investigate the nutrient dynamics

within the eddy interior. Two anticyclonic eddies, based on their subsurface nitrate and nitrite patterns, were selected from

the simulated dynamics and analysed. Results show a decoupling between local nitrate reduction (nitrite production) via bio-

geochemical processes and total changes in nitrate (nitrite) within the eddy. Analysis of water mass properties show that the10

nutrient signature within the selected structures is related to the presence of water masses from different origins. This vari-

ability is attributed to the variations with depth of the strength of the eddy rotational speed in the edge of the structure. Weak

eddy rotation at the edge of an eddy allows an injection of either shelf and/or offshore waters, depending on the direction of

the weakened flow. Our findings suggest that the biogeochemical patterns at the subsurface layer of the observed eddies in the

ETSP are likely to be related to the presence of water masses from different origin, which are trapped and are retained within15

the structure.
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Figure 1. Annual mean surface height (contour every 6 cm) overlaid on eddy kinetic energy ([cm−2 s−2], colour), corresponding to: (a)

model simulation and (b) AVISO observation. Vertical distribution of simulated (c, e) and observed (d, f) mean alongshore velocity [cm.s−1],

averaged over 3-6◦S (c, d) and at around 12◦S (e, f). The observed velocities in Figure 1-d,f were provided by IMARPE and described in

detail at Chaigneau et al. (2013).
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Figure 2. Sea surface chlorophyll concentration (in log10, [mg m−3]) corresponding to (a) model simulation and (b) MODIS observation.

Oxygen concentration at 400 m depth [µ mol l−1] corresponding to (c) model simulation and (d) CARS observation.
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Figure 3. Vertical section of oxygen ([µ mol l−1], a), nitrate ([µ mol l−1], b) and nitrite ([µ mol l−1], c) concentrations along 12 ◦S. Simulated

dynamics correspond to climatological December.The observed dynamics is based on measurements from the cruise M91, December 2012.

Details about this cruise are described in Czeschel et al. (2015).
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Figure 5. (a) Surface circulation (arrows) overlaid on the surface meridional current [cm s−1], (b) oxygen [µ mol l−1], (c) nitrate [µ mol l−1],

(d) nitrite [µ mol l−1] concentrations, (e) meridional velocities [cm s−1], (f) zonal velocities [cm s−1], (g) temperature [◦C] and (h) salinity

across the eddy Bsim center. Nitrate, oxygen, nitrite, temperature, salinity and meridional velocity section around 13.2◦S (magenta full line

in Fig 5-a). Section for zonal velocity around 85.8◦W (magenta dashed line in Fig 5-a). This dynamics corresponds to 27 January model year

28, from now on called identification instant.
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Figure 6. Eddy Asim vertical structure of: (a) nitrate reduction by denitrification [µ mol l−1], (b) nitrate production by nitrifica-

tion [µ mol l−1], (c) nitrate production-reduction difference [µ mol l−1], (d) nitrite reduction (nitrification + denitrification + anammox,

[µ mol l−1]), (e) nitrite production (denitrification + nitrification, [µ mol l−1]) and (f) nitrite production-reduction difference [µ mol l−1] at

the identification instant.
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Figure 7. (a) Time evolution of cumulative production (black line, [µ mol l−1]), cumulative reduction (cyan line, [µ mol l−1]), production-

reduction difference (blue line, [µ mol l−1]) and available nitrate (red line, [µ mol l−1]) within the eddy Bsim. (b) The same as (a) but for

nitrite. The concentration and fluxes in (a) and (b) correspond to averaged quantities in the upper 400 m depth layer within the eddy structure.

Arrow indicates the time where the sections in Figure 4 were made.
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Figure 8. Eddy Bsim vertical structure of: (a) nitrate reduction by denitrification [µ mol l−1], (b) nitrate production by nitrifica-

tion [µ mol l−1], (c) nitrate production-reduction difference [µ mol l−1], (d) nitrite reduction (nitrification + denitrification + anammox,

[µ mol l−1]), (e) nitrite production (denitrification + nitrification, [µ mol l−1]) and (f) nitrite production-reduction difference [µ mol l−1] at

the identification instant.
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Figure 9. (a) Time evolution of cumulative production (black line, [µ mol l−1]), cumulative reduction (cyan line, [µ mol l−1]), production-

reduction difference (blue line, [µ mol l−1]) and available nitrate (red line, [µ mol l−1]) within the eddy Bsim. (b) The same as (a) but for

nitrite. The concentration and fluxes in (a) and (b) correspond to averaged quantities in the upper 400 m depth layer within the eddy structure.

Arrow indicates the time where the sections in Figure 5 were made.
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Figure 10. Spatial distribution of simulated salinity, temperature [◦C] and nitrate [µ mol l−1] dynamics around the eddy Asim, corresponding

to surface (upper panels), 100m (middle panels) and 250 m depth (bottom panels). Salinity (left panels), temperature (middle-left panels),

TS diagram (middle-right panels) and nitrate (right panels). The arrows overlaid on temperature, salinity and nitrate distribution represent the

circulation patterns at the eddy’s edge. Black and magenta dots in the TS diagram correspond to eddy’s water mass properties at the instant

after the eddy formation (magenta) and identification instant (black dots). The magenta box in Fig 10-a indicates the region over which TS

diagram is calculated.
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Figure 11. Spatial distribution of simulated salinity, temperature [◦C] and nitrate [µ mol l−1] dynamics around the eddy Bsim, corresponding

to surface (upper panels), 100m (middle panels) and 250 m depth (bottom panels). Salinity (left panels), temperature (middle-left panels),

TS diagram (middle-right panels) and nitrate (right panels). The arrows overlaid on temperature, salinity and nitrate distribution represent the

circulation patterns at the eddy’s edge. Black and magenta dots in the TS diagram correspond to eddy’s water mass properties a month prior

to the identification instant (magenta) and identification instant (black dots). The magenta box in Fig 11-a indicates the region over which

TS diagram is calculated.
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