Microscale Processes and Dynamics during CH4–CO2 Guest-Molecule Exchange in Gas Hydrates
Abstract
:1. Introduction
- The use of fossil natural gas as an energy resource produces CO2. Hence, it is not the ideal choice for a society that is under pressure to mitigate global warming. By sequestering CO2 in gas hydrates during the methane-production process, the carbon footprint of the natural gas can be significantly decreased or even become negative (i.e., more CO2 is stored than is being produced from burning the methane).
- Pressure reduction in the hydrate reservoir is presently considered to be the most economically feasible and least technologically complex strategy for gas production from gas hydrates [10]. When the pressure falls below the stability pressure, the gas hydrates dissociate and the released gas can be produced. A drawback of this production strategy is the endothermic nature of gas-hydrate dissociation [11]. The reservoir cools down and the effect of the pressure decrease is counteracted by a temperature reduction that drives the system back into the thermodynamic gas-hydrate stability field. CH4–CO2 exchange, on the other hand, is a slightly exothermic process [8] and therefore avoids the problem of reservoir cooling. Therefore, combining pressure reduction with gas exchange is considered to be a promising production strategy: while gas hydrate dissociation ensures a rapid mobilization of the CH4 as a gas phase, guest-molecule exchange or rapid reformation of CO2-rich gas hydrates can balance the energy consumption of the dissociation process. This approach has already been tested on a larger scale during the 2012 Ignik Sikumi field test [12,13] by injecting a mixture of N2 and CO2 gas into the reservoir.
- Gas hydrates increase the geomechanical stability of their host sediment [14,15]. When load-bearing gas hydrate is removed during gas production, the sediment can be mobilized and an uncontrollable sand production can occur, as observed in 2013 during a field test in the Nankai Trough, Japan [16]. In the worst case, collapsing or slumping of the continental margin sediments can result in a general geomechanical hazard. Gas exchange, on the other hand, preserves the crystal structure of gas hydrate, thereby preventing the loss of sediment stability.
- Gas-hydrate dissociation occurs when the thermodynamic parameters of the environment change to values outside of the gas-hydrate stability region. This could be triggered during gas production from gas hydrates, but also by warming bottom water temperatures [5]; by pressure reduction due to, for example, isostatic rebound after postglacial melting of ice sheets [17]; or rapid sedimentation events, such as those encountered in active channel–levee systems [18]. Since CO2 hydrates are thermodynamically more stable than CH4 hydrates at a range of relevant temperature and pressure conditions [1], it has been discussed whether a proactive change of the gas hydrate composition by gas production in combination with hydrate conversion could mitigate potential risks from dissociation of gas hydrates occurring near equilibrium conditions.
2. Materials and Methods
2.1. Pressure Cells
2.2. CH4 Hydrate Formation
2.3. CH4-CO2 Exchange Experiments
2.4. Evaluation of Raman Data
- CH4 hydrate dissociation: no CO2 hydrate signal and decreasing CH4 hydrate signal
- Secondary (sec.) CH4 hydrate formation: no CO2 hydrate signal and increasing CH4 hydrate signal
- Secondary (sec.) CO2 hydrate formation: no CH4 hydrate signal and increasing CO2 hydrate signal
- Secondary (sec.) mixed-hydrate formation: increasing CH4 hydrate signal and increasing CO2 hydrate signal
- Gas exchange Type 1 (CH4 exchanged with CO2): decreasing CH4 hydrate signal and increasing CO2 hydrate signal
- CO2 hydrate dissociation: no CH4 hydrate signal and decreasing CO2 hydrate signal
- Mixed-hydrate dissociation: both gas hydrate signals initially present; decreasing CH4 hydrate signal and decreasing CO2 hydrate signal
- Gas exchange Type 2 (CO2 exchanged with CH4): CO2 hydrate signal initially present; increasing CH4 hydrate signal and decreasing CO2 hydrate signal
2.5. Evaluation of Gas-Exchange Dynamics
3. Results
3.1. Experiment NoFlow
3.2. Experiment NoFlowI1
3.3. Experiment NoFlowI2
3.4. Experiment Flow
4. Discussion
4.1. Comparability of the Experiments and Limitations of This Study
4.2. Microscale Processes
4.3. Exchange Dynamics
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: New York, NY, USA, 2008. [Google Scholar]
- Birchwood, R.; Dai, J.; Shelander, D.; Boswell, R.; Collett, T.; Cook, A.; Dallimore, S.; Fujii, K.; Imasato, Y.; Fukuhara, M. Developments in gas hydrates. Oilfield Rev. 2010, 22, 18–33. [Google Scholar]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Oyama, A.; Masutani, S.M. A Review of the Methane Hydrate Program in Japan. Energies 2017, 10, 1447. [Google Scholar] [CrossRef] [Green Version]
- Maslin, M.; Owen, M.; Betts, R.; Day, S.; Jones, T.D.; Ridgwell, A. Gas hydrates: Past and future geohazard? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 2369–2393. [Google Scholar] [CrossRef] [PubMed]
- House, K.Z.; Schrag, D.P.; Harvey, C.F.; Lackner, K.S. Permanent carbon dioxide storage in deep-sea sediments. Proc. Natl. Acad. Sci. USA 2006, 103, 12291–12295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohgaki, K.; Takano, K.; Sangawa, H.; Matsubara, T.; Nakano, S. Methane exploitation by carbon dioxide from gas hydrates. Phase equilibria for CO2-CH4 mixed hydrate system. J. Chem. Eng. Jpn. 1996, 29, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Dornan, P.; Alavi, S.; Woo, T.K. Free energies of carbon dioxide sequestration and methane recovery in clathrate hydrates. J. Chem. Phys. 2007, 127, 124510. [Google Scholar] [CrossRef] [PubMed]
- Yezdimer, E.M.; Cummings, P.T.; Chialvo, A.A. Determination of the Gibbs Free Energy of Gas Replacement in SI Clathrate Hydrates by Molecular Simulation. J. Phys. Chem. A 2002, 106, 7982–7987. [Google Scholar] [CrossRef]
- Moridis, G.J.; Collett, T.S.; Boswell, R.; Kurihara, M.; Reagan, M.T. In Toward Production From Gas Hydrates: Assessment of Resources, Technology and Potential. In Proceedings of the SPE Unconventional Reservoirs Conference, Keystone, CO, USA, 10–12 February 2008. [Google Scholar]
- Kwon, T.-H.; Kneafsey, T.J.; Rees, E.V.L. Thermal Dissociation Behavior and Dissociation Enthalpies of Methane–Carbon Dioxide Mixed Hydrates. J. Phys. Chem. B 2011, 115, 8169–8175. [Google Scholar] [CrossRef] [Green Version]
- Boswell, R.; Schoderbek, D.; Collett, T.S.; Ohtsuki, S.; White, M.; Anderson, B.J. The Ignik Sikumi Field Experiment, Alaska North Slope: Design, Operations, and Implications for CO2–CH4 Exchange in Gas Hydrate Reservoirs. Energy Fuels 2017, 31, 140–153. [Google Scholar] [CrossRef]
- Schoderbek, D.; Farrell, H.; Hester, K.; Howard, J.; Raterman, K.; Silpngarmlert, S.; Martin, K.L.; Smith, B.; Klein, P. ConocoPhillips Gas Hydrate Production Test Final Technical Report. 20 July 2013. Available online: https://netl.doe.gov/sites/default/files/netl-file/nt0006553-final-report-hydrates.pdf (accessed on 25 February 2021).
- Waite, W.F.; Santamarina, J.C.; Cortes, D.D.; Dugan, B.; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; et al. Physical properties of hydrate-bearing sediments. Rev. Geophys. 2009, 47, 47. [Google Scholar] [CrossRef]
- Yun, T.S.; Santamarina, J.C.; Ruppel, C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J. Geophys. Res. Space Phys. 2007, 112, 4. [Google Scholar] [CrossRef]
- Konno, Y.; Fujii, T.; Sato, A.; Akamine, K.; Naiki, M.; Masuda, Y.; Yamamoto, K.; Nagao, J. Key Findings of the World’s First Offshore Methane Hydrate Production Test off the Coast of Japan: Toward Future Commercial Production. Energy Fuels 2017, 31, 2607–2616. [Google Scholar] [CrossRef]
- Wallmann, K.; Riedel, M.; Hong, W.L.; Patton, H.; Hubbard, A.; Pape, T.; Hsu, C.W.; Schmidt, C.; Johnson, J.E.; Torres, M.E.; et al. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zander, T.; Haeckel, M.; Berndt, C.; Chi, W.-C.; Klaucke, I.; Bialas, J.; Klaeschen, D.; Koch, S.; Atgın, O. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea. Earth Planet. Sci. Lett. 2017, 462, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Kim, D.-Y.; Lee, J.-W.; Huh, D.-G.; Park, K.-P.; Lee, H. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc. Natl. Acad. Sci. USA 2006, 103, 12690–12694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.-H.; Kawamura, T.; Yamamoto, Y.; Komai, T. Transformation of Methane Hydrate to Carbon Dioxide Hydrate: In Situ Raman Spectroscopic Observations. J. Phys. Chem. A 2004, 108, 5057–5059. [Google Scholar] [CrossRef]
- Fan, S.; Wang, X.; Wang, Y.; Lang, X. Recovering methane from quartz sand-bearing hydrate with gaseous CO 2. J. Energy Chem. 2017, 26, 655–659. [Google Scholar] [CrossRef] [Green Version]
- Ota, M.; Abe, Y.; Watanabe, M.; Smith, R.L., Jr.; Inomata, H. Methane recovery from methane hydrate using pressurized CO2. Fluid Phase Equilibria 2005, 228, 553–559. [Google Scholar] [CrossRef]
- Jung, J.W.; Espinoza, D.N.; Santamarina, J.C. Properties and phenomena relevant to CH4-CO2replacement in hydrate-bearing sediments. J. Geophys. Res. Space Phys. 2010, 115, 10. [Google Scholar] [CrossRef]
- Van Der Waals, J.H.; Platteeuw, J.C. Clathrate Solutions. Adv. Chem. Phys. 2007, 2, 1–57. [Google Scholar] [CrossRef]
- Kondori, J.; Zendehboudi, S.; Hossain, M.E. A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective. J. Pet. Sci. Eng. 2017, 159, 754–772. [Google Scholar] [CrossRef]
- Schicks, J.M.; Luzi, M.; Beeskow-Strauch, B. The Conversion Process of Hydrocarbon Hydrates into CO2Hydrates and Vice Versa: Thermodynamic Considerations. J. Phys. Chem. A 2011, 115, 13324–13331. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Li, Q.; Li, X.; Du, Y. The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Sci. China Ser. E Technol. Sci. 2008, 51, 1272–1282. [Google Scholar] [CrossRef]
- Tung, Y.-T.; Chen, L.-J.; Chen, Y.-P.; Lin, S.-T. In Situ Methane Recovery and Carbon Dioxide Sequestration in Methane Hydrates: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2011, 115, 15295–15302. [Google Scholar] [CrossRef]
- Salamatin, A.N.; Falenty, A.; Kuhs, W.F. Diffusion Model for Gas Replacement in an Isostructural CH4–CO2 Hydrate System. J. Phys. Chem. C 2017, 121, 17603–17616. [Google Scholar] [CrossRef]
- Spycher, N.; Pruess, K.; Ennis-King, J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim. Cosmochim. Acta 2003, 67, 3015–3031. [Google Scholar] [CrossRef]
- Sujith, K.S.; Ramachandran, C.N. Carbon dioxide induced bubble formation in a CH4–CO2–H2O ternary system: A molecular dynamics simulation study. Phys. Chem. Chem. Phys. 2016, 18, 3746–3754. [Google Scholar] [CrossRef] [PubMed]
- Kossel, E.; Bigalke, N.; Pinero, E.; Haeckel, M. The SUGAR Toolbox: A Library of Numerical Algorithms and Data for Modelling of Gas Hydrate Systems and Marine Environments; GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel: Kiel, Germany, 2013. [Google Scholar]
- Falenty, A.; Qin, J.; Salamatin, A.N.; Yang, L.; Kuhs, W.F. Fluid Composition and Kinetics of the in Situ Replacement in CH4–CO2Hydrate System. J. Phys. Chem. C 2016, 120, 27159–27172. [Google Scholar] [CrossRef]
- Ersland, G.; Husebø, J.; Graue, A.; Baldwin, B.; Howard, J.; Stevens, J. Measuring gas hydrate formation and exchange with CO2 in Bentheim sandstone using MRI tomography. Chem. Eng. J. 2010, 158, 25–31. [Google Scholar] [CrossRef]
- Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M. Magnetic Resonance Imaging of Gas Hydrate Formation and Conversion at Sub-Seafloor Conditions. Diffusion Fundam. 2013, 18, 1–4. [Google Scholar]
- Graue, A.; Kvamme, B.; Baldwin, B.; Stevens, J.; Howard, J.J.; Aspenes, E.; Ersland, G.; Husebo, J.; Zornes, D. MRI Visualization of Spontaneous Methane Production From Hydrates in Sandstone Core Plugs When Exposed to CO2. SPE J. 2008, 13, 146–152. [Google Scholar] [CrossRef]
- Chaouachi, M.; Falenty, A.; Sell, K.; Enzmann, F.; Kersten, M.; Haberthür, D.; Kuhs, W.F. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy. Geochem. Geophys. Geosyst. 2015, 16, 1711–1722. [Google Scholar] [CrossRef] [Green Version]
- Kneafsey, T.J.; Tomutsa, L.; Moridis, G.J.; Seol, Y.; Freifeld, B.M.; Taylor, C.E.; Gupta, A. Methane hydrate formation and dissociation in a partially saturated core-scale sand sample. J. Pet. Sci. Eng. 2007, 56, 108–126. [Google Scholar] [CrossRef] [Green Version]
- Priegnitz, M.; Thaler, J.; Spangenberg, E.; Rücker, C.; Schicks, J.M. A cylindrical electrical resistivity tomography array for three-dimensional monitoring of hydrate formation and dissociation. Rev. Sci. Instrum. 2013, 84, 104502. [Google Scholar] [CrossRef]
- Hirohama, S.; Shimoyama, Y.; Wakabayashi, A.; Tatsuta, S.; Nishida, N. Conversion of CH4-Hydrate to CO2-Hydrate in Liquid CO2. J. Chem. Eng. Jpn. 1996, 29, 1014–1020. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Sun, C.-Y.; Yang, X.; Ma, P.-C.; Ma, Z.-W.; Liu, B.; Ma, Q.-L.; Yang, L.-Y.; Chen, G.-J. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor. Energy 2012, 40, 47–58. [Google Scholar] [CrossRef]
- Yuan, Q.; Sun, C.-Y.; Liu, B.; Wang, X.; Ma, Z.-W.; Ma, Q.-L.; Yang, L.-Y.; Chen, G.-J.; Li, Q.-P.; Li, S.; et al. Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2. Energy Convers. Manag. 2013, 67, 257–264. [Google Scholar] [CrossRef]
- Cha, M.; Shin, K.; Lee, H.; Moudrakovski, I.L.; Ripmeester, J.A.; Seo, Y. Kinetics of Methane Hydrate Replacement with Carbon Dioxide and Nitrogen Gas Mixture Using in Situ NMR Spectroscopy. Environ. Sci. Technol. 2015, 49, 1964–1971. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Seo, Y.; Seo, Y.T.; Moudrakovski, I.L.; Ripmeester, J.A. Recovering methane from solid methane hydrate with carbon dioxide. Angew. Chem. 2003, 115, 5202–5205. [Google Scholar] [CrossRef]
- Park, Y.; Cha, M.; Cha, J.-H.; Shin, K.; Lee, H.; Park, K.-P.; Huh, D.-G.; Lee, H.-Y.; Kim, S.-J.; Lee, J. In Swapping carbon dioxide for complex gas hydrate structures. In Proceedings of the ICGH 6th International Conference on Gas Hydrates, Vancouver, BC, Canada, 6–10 July 2008. [Google Scholar]
- Everett, S.M.; Rawn, C.J.; Chakoumakos, B.C.; Keffer, D.J.; Huq, A.; Phelps, T.J. Insights into the structure of mixed CO2/CH4 in gas hydrates. Am. Miner. 2015, 100, 1203–1208. [Google Scholar] [CrossRef]
- Beeskow-Strauch, B.; Schicks, J.M. The Driving Forces of Guest Substitution in Gas Hydrates—A Laser Raman Study on CH4-CO2 Exchange in the Presence of Impurities. Energies 2012, 5, 420–437. [Google Scholar] [CrossRef] [Green Version]
- Komai, T.; Yamamoto, Y.; Ohga, K. Dynamics of Reformation and Replacement of CO2 and CH4 Gas Hydrates. Ann. N. Y. Acad. Sci. 2006, 912, 272–280. [Google Scholar] [CrossRef]
- Xu, C.-G.; Yan, R.; Fu, J.; Zhang, S.-H.; Yan, K.-F.; Chen, Z.-Y.; Xia, Z.-M.; Li, X.-S. Insight into micro-mechanism of hydrate-based methane recovery and carbon dioxide capture from methane-carbon dioxide gas mixtures with thermal characterization. Appl. Energy 2019, 239, 57–69. [Google Scholar] [CrossRef]
- Everall, N.J. Confocal Raman Microscopy: Performance, Pitfalls, and Best Practice. Appl. Spectrosc. 2009, 63, 245A–262A. [Google Scholar] [CrossRef]
- Tishchenko, P.; Hensen, C.; Wallmann, K.; Wong, C.S. Calculation of the stability and solubility of methane hydrate in seawater. Chem. Geol. 2005, 219, 37–52. [Google Scholar] [CrossRef]
- Tishchenko, P.; Wong, C.; Johnson, W.; Haeckel, M.; Wallmann, K.; Aloisi, G. Stability and solubility of CO2 hydrate in seawater. In Proceedings of the 8th International Carbon Dioxide Conference, Jena, Germany, 13–19 September 2009. [Google Scholar]
- Legoix, L.N.; Ruffine, L.; Donval, J.-P.; Haeckel, M. Phase Equilibria of the CH4-CO2 Binary and the CH4-CO2-H2O Ternary Mixtures in the Presence of a CO2-Rich Liquid Phase. Energies 2017, 10, 2034. [Google Scholar] [CrossRef] [Green Version]
- Seo, Y.-T.; Lee, H. Multiple-Phase Hydrate Equilibria of the Ternary Carbon Dioxide, Methane, and Water Mixtures. J. Phys. Chem. B 2001, 105, 10084–10090. [Google Scholar] [CrossRef]
- Wagner, W.; Riethmann, T.; Feistel, R.; Harvey, A.H. New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih. J. Phys. Chem. Ref. Data 2011, 40, 043103. [Google Scholar] [CrossRef] [Green Version]
- Sum, A.K.; Burruss, R.C.; Sloan, E.D. Measurement of Clathrate Hydrates via Raman Spectroscopy. J. Phys. Chem. B 1997, 101, 7371–7377. [Google Scholar] [CrossRef]
- Tulk, C.A.; Ripmeester, J.A.; Klug, D.D. The Application of Raman Spectroscopy to the Study of Gas Hydrates. Ann. N. Y. Acad. Sci. 2006, 912, 859–872. [Google Scholar] [CrossRef]
- Qin, J.; Kuhs, W.F. Calibration of Raman Quantification Factors of Guest Molecules in Gas Hydrates and Their Application to Gas Exchange Processes Involving N2. J. Chem. Eng. Data 2014, 60, 369–375. [Google Scholar] [CrossRef]
- Fick, A. Über diffusion. Poggendorff’s Annalen 1855, 94, 59–86. [Google Scholar]
- Bridges, T.E.; Houlne, M.P.; Harris, J.M. Spatially Resolved Analysis of Small Particles by Confocal Raman Microscopy: Depth Profiling and Optical Trapping. Anal. Chem. 2004, 76, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Häfner, F.; Sames, D.; Voigt, H.-D. Wärme-und Stofftransport: Mathematische Methoden; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Chaouachi, M.; Neher, S.H.; Falenty, A.; Kuhs, W.F. Time Resolved Coarsening of Clathrate Crystals: The Case of Gas Hydrates. Cryst. Growth Des. 2017, 17, 2458–2472. [Google Scholar] [CrossRef]
- Pan, M.; Ismail, N.A.; Luzi-Helbing, M.; Koh, C.A.; Schicks, J.M. New Insights on a µm-Scale into the Transformation Process of CH4 Hydrates to CO2-Rich Mixed Hydrates. Energies 2020, 13, 5908. [Google Scholar] [CrossRef]
- Fujii, K.; Kondo, W. Kinetics of the hydration of tricalcium silicate. J. Am. Ceram. Soc. 1974, 57, 492–497. [Google Scholar] [CrossRef]
- Lee, B.R.; Koh, C.A.; Sum, A.K. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2. Phys. Chem. Chem. Phys. 2014, 16, 14922–14927. [Google Scholar] [CrossRef]
- Tabaksblat, R.; Meier, R.J.; Kip, B.J. Confocal Raman Microspectroscopy: Theory and Application to Thin Polymer Samples. Appl. Spectrosc. 1992, 46, 60–68. [Google Scholar] [CrossRef]
- Ota, M.; Saito, T.; Aida, T.; Watanabe, M.; Sato, Y.; Smith, R.L., Jr.; Inomata, H. Macro and microscopic CH4–CO2 replacement in CH4 hydrate under pressurized CO2. AIChE J. 2007, 53, 2715–2721. [Google Scholar] [CrossRef]
- Geng, C.-Y.; Wen, H.; Zhou, H. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2. J. Phys. Chem. A 2009, 113, 5463–5469. [Google Scholar] [CrossRef] [PubMed]
- Kondori, J.; James, L.; Zendehboudi, S. Molecular scale modeling approach to evaluate stability and dissociation of methane and carbon dioxide hydrates. J. Mol. Liq. 2020, 297, 111503. [Google Scholar] [CrossRef]
- Clarke, M.; Bishnoi, P.R. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition. Can. J. Chem. Eng. 2001, 79, 143–147. [Google Scholar] [CrossRef]
- Kim, H.; Bishnoi, P.; Heidemann, R.; Rizvi, S. Kinetics of methane hydrate decomposition. Chem. Eng. Sci. 1987, 42, 1645–1653. [Google Scholar] [CrossRef]
- Deusner, C.; Bigalke, N.; Kossel, E.; Haeckel, M. Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2. Energies 2012, 5, 2112–2140. [Google Scholar] [CrossRef] [Green Version]
No Flow | NoFlowI1 | NoFlowI2 | Flow 1 | Flow 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
%S | ΔS | %S | ΔS | %S | ΔS | %S | ΔS | %S | ΔS | |
sec. CH4 hydrate | 10% | +3% | 3% | +1% | 10% | +2% | 18% | +7% | ||
sec. mix hydrate | 13% | +4% | 18% | +3% | 5% | +2% | 2% | +2% | 32% | +18% |
CH4-CO2 exchange | 41% | −14% | 53% | −23% | 22% | −9% | 93% | −56% | 23% | −6% |
CO2-CH4 exchange | 4% | +3% | ||||||||
CH4 hydrate diss. | 35% | −14% | 20% | −10% | 62% | −18% | 5% | −3% | 16% | −4% |
mix hydrate diss. | 8% | −2% | ||||||||
total CH4 hyd | 100% | −21% | 100% | −29% | 100% | −24% | 100% | −57% | 100% | +17% |
experimental period/h | 95 | 47 | 41 | 5.5 | 10.5 |
NoFlow | NoFlowI1 | NoFlowI2 | Flow 1 | Flow 2 | ||
---|---|---|---|---|---|---|
%S | %S | %S | %S | %S | ΔS | |
sec. CO2 hydrate | 13% | 23% | 26% | 6% | 6% | +10% |
sec. mix hydrate | 38% | 28% | 33% | 38% | 47% | + 33% |
CH4-CO2 exchange | 49% | 49% | 44% | 56% | 9% | +11% |
CO2-CH4 exchange | 25% | −3% | ||||
CO2 hydrate diss. | 4% | −2% | ||||
mix hydrate diss. | 7% | −3% | ||||
total CO2 hyd | 100% | 100% | 100% | 100% | 100% | +46% |
time period/h | 95 | 47 | 41 | 5.5 | 10.5 |
DCH4/R02/10−7 s | DCO2/R02/10−7 s | R0/µm | DCH4/(10−18 m2/s) | DCO2/(10−18 m2/s) | |
---|---|---|---|---|---|
grain 1 (NoFlow) | 0.69 ± 0.25 | 2.4 ± 0.58 | 15–30 | 15.5–62.2 | 54.7–218.7 |
grain 2 (NoFlow) | 0.55 ± 0.11 | 0.33 ± 0.11 | 10–30 | 5.5–49.8 | 3.4–30.2 |
grain 3 (NoFlowI1) | 0.09 ± 0.18 | 1.19 ± 0.172 | 35–50 | 11.0–22.4 | 145.8–297.5 |
grain 4 (NoFlowI1) | 2.08 ± 0.55 | 17.2 ± 2.44 | 25–50 | 130.0–520.0 | 1075.0–4300.0 |
grain 5 (NoFlowI1) | 2.52 ± 0.47 | too noisy | 20–50 | 100.8–630.0 | |
DCH4/(10−14 m2/s) | DCO2/(10−14 m2/s) | ||||
grain 6 (Flow) | 70.5 ± 10.7 | 91 ± 61.8 | 100–250 | 7.1–44.1 | 9.1–56.9 |
grain 7 (Flow) | 39.5 ± 18.6 | 108 ± 34.9 | 100–250 | 2.9–17.9 | 4.6–28.9 |
grain 8 (Flow) | 73.6 ± 5.9 | 236 ± 88.2 | 100–250 | 6.7–42.4 | 21.1–131.9 |
grain 9 (Flow) | 48.8 ± 18.9 | 88.7 ± 34.8 | 100–250 | 4.0–24.7 | 10.8–67.5 |
grain 10 (Flow) | 55.3 ± 15 | 132 ± 43.5 | 100–250 | 7.4–46.0 | 23.6–147.5 |
grain 11 (Flow) | 74.1 ± 10.4 | 156 ± 19.9 | 100–250 | 4.9–30.5 | 8.9–55.4 |
grain 12 (Flow) | 74.1 ± 11.1 | 116 ± 60.6 | 100–250 | 5.5–34.6 | 13.2–82.5 |
grain 13 (Flow) | 60.5 ± 24.2 | 63.6 ± 48 | 100–250 | 7.4–46.3 | 15.6–97.5 |
grain 14 (Flow) | 32.7 ± 13.6 | 30.8 ± 21.9 | 100–250 | 3.8–23.6 | 4.3–26.9 |
grain 15 (Flow) | 44.8 ± 14.5 | 50.3 ± 30 | 100–250 | 9.7–60.5 | 14.7–91.9 |
grain 16 (Flow) | 79.2 ± 21.3 | 91.5 ± 41.1 | 100–250 | 7.4–46.3 | 11.6–72.5 |
grain 17 (Flow) | 68.1 ± 6.6 | 96.5 ± 54.7 | 100–250 | 6.1–37.8 | 6.4–39.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kossel, E.; Bigalke, N.K.; Deusner, C.; Haeckel, M. Microscale Processes and Dynamics during CH4–CO2 Guest-Molecule Exchange in Gas Hydrates. Energies 2021, 14, 1763. https://doi.org/10.3390/en14061763
Kossel E, Bigalke NK, Deusner C, Haeckel M. Microscale Processes and Dynamics during CH4–CO2 Guest-Molecule Exchange in Gas Hydrates. Energies. 2021; 14(6):1763. https://doi.org/10.3390/en14061763
Chicago/Turabian StyleKossel, Elke, Nikolaus K. Bigalke, Christian Deusner, and Matthias Haeckel. 2021. "Microscale Processes and Dynamics during CH4–CO2 Guest-Molecule Exchange in Gas Hydrates" Energies 14, no. 6: 1763. https://doi.org/10.3390/en14061763
APA StyleKossel, E., Bigalke, N. K., Deusner, C., & Haeckel, M. (2021). Microscale Processes and Dynamics during CH4–CO2 Guest-Molecule Exchange in Gas Hydrates. Energies, 14(6), 1763. https://doi.org/10.3390/en14061763