Dugerdil, Lucas; Joannin, Sébastien; Peyron, Odile; Bayramova, Shafag; Huang, Xiaozhong; Egamberdieva, Dilfuza; Alimov, Jakhongir; Boldgiv, Bazartseren; Sahakyan, Lilit; Ménot, Guillemette (2025): Fractional abundances of branched glycerol dialkyl glycerol tetraethers (brGDGT) from the Arid Central Asian Data Base (ACADB) for surface brGDGT samples [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.983386, In: Dugerdil, L et al. (2025): Arid Central Asian Data Base (ACADB) for surface brGDGT samples [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.983391
Always quote citation above when using data! You can download the citation in several formats below.
Published: 2025-10-13 • DOI registered: 2025-10-13
Keyword(s):
Source:
Cao, Jiantao; Rao, Z; Shi, Fuxi; Jia, Guodong (2020): Ice formation on lake surfaces in winter causes warm-season bias of lacustrine brGDGT temperature estimates. Biogeosciences, 17(9), 2521-2536, https://doi.org/10.5194/bg-17-2521-2020
Chen, Chihao; Bai, Yan; Fang, Xiaomin; Zhuang, Guangsheng; Khodzhiev, Amriddin; Bai, Xiaojing; Murodov, Azamdzhon (2021): Evaluating the potential of soil bacterial tetraether proxies in westerlies dominating western Pamirs, Tajikistan and implications for paleoenvironmental reconstructions. Chemical Geology, 559, 119908, https://doi.org/10.1016/j.chemgeo.2020.119908
Dang, Xinyue; Ding, Weihua; Yang, Huan; Pancost, Richard D; Naafs, Bernhard David A; Xue, Jiantao; Lin, X; Lu, Jiayi; Xie, Shucheng (2018): Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese lake sediments compared to that in soils. Organic Geochemistry, 119, 72-79, https://doi.org/10.1016/j.orggeochem.2018.02.008
De Jonge, Cindy; Kuramae, E E; Radujković, D; Weedon, J T; Janssens, Ivan A; Peterse, Francien (2021): The influence of soil chemistry on branched tetraether lipids in mid- and high latitude soils: Implications for brGDGT- based paleothermometry. Geochimica et Cosmochimica Acta, 310, 95-112, https://doi.org/10.1016/j.gca.2021.06.037
De Jonge, Cindy; Radujković, Dajana; Sigurdsson, Bjarni D; Weedon, James T; Janssens, Ivan A; Peterse, Francien (2019): Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils. Organic Geochemistry, 137, 103897, https://doi.org/10.1016/j.orggeochem.2019.07.006
De Jonge, Cindy; Stadnitskaia, Alina; Fedotov, Andrey; Sinninghe Damsté, Jaap S (2015): Impact of riverine suspended particulate matter on the branched glycerol dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga River in Lake Baikal (Russia). Organic Geochemistry, 83-84, 241-252, https://doi.org/10.1016/j.orggeochem.2015.04.004
Dearing Crampton-Flood, Emily; Tierney, Jessica E; Peterse, Francien; Kirkels, Frédérique M S A; Sinninghe Damsté, Jaap S (2020): BayMBT: A Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats. Geochimica et Cosmochimica Acta, 268, 142-159, https://doi.org/10.1016/j.gca.2019.09.043
Ding, Su; Kohlhepp, Bernd; Trumbore, Susan; Küsel, Kirsten; Totsche, Kai-Uwe; Pohnert, Georg; Gleixner, Gerd; Schwab, Valérie F (2018): In situ production of core and intact bacterial and archaeal tetraether lipids in groundwater. Organic Geochemistry, 126, 1-12, https://doi.org/10.1016/j.orggeochem.2018.10.005
Duan, Yanwu; Sun, Qing; Werne, Josef P; Yang, Huan; Jia, Jia; Wang, Leibin; Xie, Haichao; Chen, Fahu (2020): Soil pH Dominates the Distributions of Both 5- and 6-Methyl Branched Tetraethers in Arid Regions. Journal of Geophysical Research: Biogeosciences, 125(10), e2019JG005356, https://doi.org/10.1029/2019JG005356
Dugerdil, Lucas; Joannin, Sébastien; Peyron, Odile; Jouffroy-Bapicot, Isabelle; Vannière, Boris; Boldgiv, Bazartseren; Behling, Hermann; Ménot, Guillemette (2021): New Mongolian-Siberian pollen and brGDGT surface dataset: local calibration for paleoclimate reconstructions [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.933664
Fick, Stephen E; Hijmans, Robert J (2017): WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. http://worldclim.org/version2, International Journal of Climatology, 37(12), 4302-4315, https://doi.org/10.1002/joc.5086
Guo, Jingjing; Glendell, Miriam; Meersmans, Jeroen; Kirkels, Frédérique M S A; Middelburg, Jack J; Peterse, Francien (2020): Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England). Biogeosciences, 17(12), 3183-3201, https://doi.org/10.5194/bg-17-3183-2020
Guo, Jingjing; Ma, Tian; Liu, Nana; Zhang, Xinying; Hu, Huifeng; Ma, Wenhong; Wang, Zhiheng; Feng, Xiaojuan; Peterse, Francien (2021): Branched tetraether lipids and bacterial communities along an aridity soil transect in Inner Mongolia, northern China [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.938067
Khodzher, Tamara; Domysheva, Valentina Mikhailovna; Sorokovikova, Larisa M; Sakirko, Mariya V; Tomberg, Irina V (2017): Current chemical composition of Lake Baikal water. Inland Waters, 7(3), 250-258, https://doi.org/10.1080/20442041.2017.1329982
Kirkels, Frédérique M S A; Ponton, Camilo; Galy, Valier; West, A Joshua; Feakins, Sarah J; Peterse, Francien (2019): From Andes to Amazon: assessing branched tetraether lipids as tracers for soil Organic Carbon in the Madre de Dios River system. Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1029/2019JG005270
Kou, Qiangqiang; Zhu, Liping; Ju, Jianting; Wang, Junbo; Xu, Teng; Li, Cunlin; Ma, Qingfeng (2022): Influence of salinity on glycerol dialkyl glycerol tetraether-based indicators in Tibetan Plateau lakes: Implications for paleotemperature and paleosalinity reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 601, 111127, https://doi.org/10.1016/j.palaeo.2022.111127
Kusch, Stephanie; Winterfeld, Maria; Mollenhauer, Gesine; Höfle, Silke T; Schirrmeister, Lutz; Schwamborn, Georg; Rethemeyer, Janet (2019): Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: Diversity, environmental controls, and implications for proxy applications. Organic Geochemistry, 136, 103888, https://doi.org/10.1016/j.orggeochem.2019.06.009
Li, Jingbo; Naafs, Bernhard David A; Pancost, Richard D; Yang, Huan; Liu, Deng; Xie, Shucheng (2017): Distribution of branched tetraether lipids in ponds from Inner Mongolia, NE China: Insight into the source of brGDGTs. Organic Geochemistry, 112, 127-136, https://doi.org/10.1016/j.orggeochem.2017.07.005
Li, Y; Zhao, Shijin; Pei, Hongye; Qian, Shi; Zang, Jingjie; Dang, Xinyue; Yang, Huan (2018): Distribution of glycerol dialkyl glycerol tetraethers in surface soils along an altitudinal transect at cold and humid Mountain Changbai: Implications for the reconstruction of paleoaltimetry and paleoclimate. Science China Earth Sciences, 61(7), 925-939, https://doi.org/10.1007/s11430-017-9168-9
Martínez-Sosa, Pablo; Tierney, Jessica E (2019): Lacustrine brGDGT response to microcosm and mesocosm incubations. Organic Geochemistry, 127, 12-22, https://doi.org/10.1016/j.orggeochem.2018.10.011
Martínez-Sosa, Pablo; Tierney, Jessica E; Meredith, Laura K (2020): Controlled lacustrine microcosms show a brGDGT response to environmental perturbations. Organic Geochemistry, 145, 104041, https://doi.org/10.1016/j.orggeochem.2020.104041
Martínez-Sosa, Pablo; Tierney, Jessica E; Stefanescu, Ioana C; Dearing Crampton-Flood, Emily; Shuman, Bryan N; Routson, Cody (2021): A global Bayesian temperature calibration for lacustrine brGDGTs. Geochimica et Cosmochimica Acta, 305, 87-105, https://doi.org/10.1016/j.gca.2021.04.038
Naafs, Bernhard David A; Gallego-Sala, Angela V; Inglis, Gordon N; Pancost, Richard D (2017): Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration. Organic Geochemistry, 106, 48-56, https://doi.org/10.1016/j.orggeochem.2017.01.009
Ning, Dongliang; Zhang, Enlou; Shulmeister, James; Chang, Jie; Sun, Weiwei; Ni, Zhenyu (2019): Holocene mean annual air temperature (MAAT) reconstruction based on branched glycerol dialkyl glycerol tetraethers from Lake Ximenglongtan, southwestern China. Organic Geochemistry, 133, 65-76, https://doi.org/10.1016/j.orggeochem.2019.05.003
Pei, Hongye; Wang, C; Wang, Yongbo; Yang, Huan; Xie, Shucheng (2019): Distribution of microbial lipids at an acid mine drainage site in China: Insights into microbial adaptation to extremely low pH conditions. Organic Geochemistry, 134, 77-91, https://doi.org/10.1016/j.orggeochem.2019.05.008
Pérez-Angel, Lina C; Sepúlveda, Julio; Molnar, P; Montes, Camilo; Rajagopalan, Balaji; Snell, Kathryn; González-Arango, Catalina; Dildar, Nadia (2020): Soil and Air Temperature Calibrations Using Branched GDGTs for the Tropical Andes of Colombia: Toward a Pan-Tropical Calibration. Geochemistry, Geophysics, Geosystems, 21(8), https://doi.org/10.1029/2020GC008941
Qian, Shi; Yang, Huan; Dong, Caohui; Wang, Yongbo; Wu, J; Pei, Hongye; Dang, Xinyue; Lu, Jiayi; Zhao, Shijin; Xie, Shucheng (2019): Rapid response of fossil tetraether lipids in lake sediments to seasonal environmental variables in a shallow lake in central China: Implications for the use of tetraether-based proxies. Organic Geochemistry, 128, 108-121, https://doi.org/10.1016/j.orggeochem.2018.12.007
Raberg, Jonathan H; Harning, David J; Crump, Sarah E; de Wet, Gregory A; Blumm, Aria; Kopf, Sebastian; Geirsdóttir, Áslaug; Miller, Gifford H; Sepúlveda, Julio (2021): Revised fractional abundances and warm-season temperatures substantially improve brGDGT calibrations in lake sediments. Biogeosciences, 18(12), 3579-3603, https://doi.org/10.5194/bg-18-3579-2021
Raberg, Jonathan H; Miller, Gifford H; Geirsdóttir, Áslaug; Sepúlveda, Julio (2022): Global compilation of brGDGT lipid distributions, temperature, and pH across a dozen sample types [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.940052
Russell, James M; Hopmans, Ellen C; Loomis, Shannon E; Liang, Jie; Sinninghe Damsté, Jaap S (2018): Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations. Organic Geochemistry, 117, 56-69, https://doi.org/10.1016/j.orggeochem.2017.12.003
Trabucco, Antonio; Zomer, Robert (2018): Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 [dataset]. figshare, https://doi.org/10.6084/M9.FIGSHARE.7504448.V1
van Bree, Loes G J; Peterse, Francien; Baxter, Allix J; De Crop, Wannes; van Grinsven, Sigrid; Villanueva, Laura; Verschuren, Dirk; Sinninghe Damsté, Jaap S (2020): Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake. Biogeosciences, 17(21), 5443-5463, https://doi.org/10.5194/bg-17-5443-2020
Véquaud, Pierre; Derenne, Sylvie; Anquetil, Christelle; Collin, Sylvie; Poulenard, Jérôme; Sabatier, Pierre; Huguet, Arnaud (2021): Influence of environmental parameters on the distribution of bacterial lipids in soils from the French Alps: Implications for paleo-reconstructions. Organic Geochemistry, 153, 104194, https://doi.org/10.1016/j.orggeochem.2021.104194
Wang, Huanye; An, Zhisheng; Lu, Hongxuan; Zhao, Z; Liu, Weiguo (2020): Calibrating bacterial tetraether distributions towards in situ soil temperature and application to a loess-paleosol sequence. Quaternary Science Reviews, 231, 106172, https://doi.org/10.1016/j.quascirev.2020.106172
Wang, Huanye; Liu, Weiguo (2021): Soil temperature and brGDGTs along an elevation gradient on the northeastern Tibetan Plateau: A test of soil brGDGTs as a proxy for paleoelevation. Chemical Geology, 566, 120079, https://doi.org/10.1016/j.chemgeo.2021.120079
Wang, Huanye; Liu, Weiguo; He, Yuxin; Zhou, Aifeng; Zhao, Hui; Liu, Hui; Cao, Yunning; Hu, Jing; Meng, Bowen; Jiang, Jiawei; Kolpakova, Marina; Krivonogov, Sergey K; Liu, Zhonghui (2021): Salinity-controlled isomerization of lacustrine brGDGTs impacts the associated M B T 5 M E ' terrestrial temperature index. Geochimica et Cosmochimica Acta, 305, 33-48, https://doi.org/10.1016/j.gca.2021.05.004
Wang, M; Zheng, Z; Zong, Yongqiang; Man, Meiling; Tian, L (2019): Distributions of soil branched glycerol dialkyl glycerol tetraethers from different climate regions of China. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-39147-9
Wang, Mengyuan; Zong, Yongqiang; Zheng, Zhuo; Man, Meiling; Hu, Jianfang; Tian, Liping (2018): Utility of brGDGTs as temperature and precipitation proxies in subtropical China. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-017-17964-0
Weber, Yuki; Sinninghe Damsté, Jaap S; Zopfi, Jakob; De Jonge, Cindy; Gilli, Adrian; Schubert, Carsten J; Lepori, Fabio; Lehmann, Moritz F; Niemann, Helge (2018): Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes. Proceedings of the National Academy of Sciences, 115(43), 10926-10931, https://doi.org/10.1073/pnas.1805186115
Woltering, Martijn; Werne, Josef P; Kish, Jason L; Hicks, Randall; Sinninghe Damsté, Jaap S; Schouten, Stefan (2012): Vertical and temporal variability in concentration and distribution of thaumarchaeotal tetraether lipids in Lake Superior and the implications for the application of the TEX86 temperature proxy. Geochimica et Cosmochimica Acta, 87, 136-153, https://doi.org/10.1016/j.gca.2012.03.024
Wu, J; Yang, Huan; Pancost, Richard D; Naafs, Bernhard David A; Qian, Shi; Dang, Xinyue; Sun, H; Pei, Hongye; Wang, Ruicheng; Zhao, Shijin; Xie, Shucheng (2021): Variations in dissolved O2 in a Chinese lake drive changes in microbial communities and impact sedimentary GDGT distributions. Chemical Geology, 579, 120348, https://doi.org/10.1016/j.chemgeo.2021.120348
Yao, Yuan; Zhao, J; Bauersachs, Thorsten; Huang, Yongsong (2019): Effect of water depth on the TEX86 proxy in volcanic lakes of northeastern China. Organic Geochemistry, 129, 88-98, https://doi.org/10.1016/j.orggeochem.2019.01.014
Yao, Yuan; Zhao, J; Vachula, Richard; Werne, Josef P; Wu, Jing; Song, Xueshu; Huang, Yongsong (2020): Correlation between the ratio of 5-methyl hexamethylated to pentamethylated branched GDGTs (HP5) and water depth reflects redox variations in stratified lakes. Organic Geochemistry, 147, 104076, https://doi.org/10.1016/j.orggeochem.2020.104076
Zang, Jingjie; Lei, Yanyan; Yang, Huan (2018): Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions. Frontiers of Earth Science, 12(4), 862-876, https://doi.org/10.1007/s11707-018-0722-z
Zhao, Boyang; Castañeda, Isla S; Bradley, Raymond S; Salacup, Jeffrey M; de Wet, Gregory A; Daniels, William C; Schneider, Tobias (2021): Development of an in situ branched GDGT calibration in Lake 578, southern Greenland. Organic Geochemistry, 152, 104168, https://doi.org/10.1016/j.orggeochem.2020.104168
Funding:
Coverage:
Median Latitude: 32.398690 * Median Longitude: 43.325074 * South-bound Latitude: -54.900000 * West-bound Longitude: -177.400000 * North-bound Latitude: 79.200000 * East-bound Longitude: 172.150000
Event(s):
Comment:
This file contains the fractional abundances of the 21 available branched glycerol dialkyl glycerol tetraethers (brGDGT) including the 5-, 6- and 7-methyl isomers. The fractional abundances are given in percentages. For the name of the compounds, the Roman numerals refer to the nomenclature given in De Jonge et al. (2014a). The 5-, 6- and 7-methyl isomer are given with _5Me, _6Me and _7Me respectively.
Parameter(s):
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
84835 data points
Download Data
View dataset as HTML (shows only first 2000 rows)
