Hill, Claudia E L; Rücker, Julia; Eichhorn, Nele; Mezger, Selma D; Caporale, Giulia; El-Khaled, Yusuf C; Blanco, Sahara; Wild, Christian; Tilstra, Arjen (2025): Excess particulate organic matter negatively affects the ecophysiology of the widespread soft coral Xenia umbellata [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.974797
Always quote citation above when using data! You can download the citation in several formats below.
Published: 2025-02-10 • DOI registered: 2025-03-11
Abstract:
Coastal coral reefs are experiencing rising concentrations of organic matter. While dissolved organic matter (DOM), rather than particulate organic matter (POM), may negatively impact hard corals, the impact on soft corals remains unclear. We examined the physiological effect of 20 mg L-1 of organic carbon (C) addition on the widespread Indo-Pacific soft coral Xenia umbellata in a series of tank experiments over 28 days. We supplied DOM as glucose, and two POM sources as phytoplankton (2 - 5 µm length) and zooplankton (150 – 200 µm length). We comparatively assessed coral morphology, pulsation, colouration, algal symbiont densities, chlorophyll a, oxygen fluxes, and mortality. Corals in the control and DOM enrichment treatments exhibited no morphological or physiological changes, whereas, excess phyto- and zooplankton caused disfigurement of the polyp tentacles and shortening of its pinnules. This coincided with a mortality of 11 and 14%, respectively, a 35% reduction in pulsation rates, and darkening of the polyps (with excess zooplankton), while other assessed response variables remained stable. This suggests that in contrast to many hard corals, the soft coral X. umbellata is vulnerable to excess POM rather than DOM, with amplified effects upon exposure to larger particles. Our results suggest that excess POM may damage the delicate feeding apparatus of X. umbellata, thereby reducing pulsation and lowering gas exchange. In turn, this can cause nutritional, and ultimately, energy deficiencies by directly affecting heterotrophic and autotrophic feeding. Our findings indicate that the global-change-resilient soft coral X. umbellata is vulnerable to local eutrophication, particularly high concentrations of POM. Xenia umbellata originates from the Red Sea.
Supplement to:
Hill, Claudia E L; Rücker, Julia; Eichhorn, Nele; Mezger, Selma D; Caporale, Giulia; El-Khaled, Yusuf C; Blanco C, S V; Wild, Christian; Tilstra, Arjen (2024): Excess particulate organic matter negatively affects the ecophysiology of the widespread soft coral Xenia umbellata. Marine Biology, 171(12), 238, https://doi.org/10.1007/s00227-024-04563-7
References:
RStudio: Integrated Development Environment for R. Posit Software [software]. https://posit.co/
Anthony, Kenneth R N; Fabricius, Katharina Elisabeth (2000): Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology, 252(2), 221-253, https://doi.org/10.1016/S0022-0981(00)00237-9
Barrón, Cristina; Duarte, Carlos Manuel (2015): Dissolved organic carbon pools and export from the coastal ocean. Global Biogeochemical Cycles, 29(10), 1725-1738, https://doi.org/10.1002/2014GB005056
Baum, Gunilla; Januar, Indra; Ferse, Sebastian C A; Wild, Christian; Kunzmann, Andreas (2016): Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia. PeerJ, 4, e2625, https://doi.org/10.7717/peerj.2625
Bayraktarov, Elisa; Wild, Christian (2014): Spatiotemporal variability of sedimentary organic matter supply and recycling processes in coral reefs of Tayrona National Natural Park, Colombian Caribbean. Biogeosciences, 11(11), 2977-2990, https://doi.org/10.5194/bg-11-2977-2014
Bednarz, Vanessa N; Naumann, Malik S; Wild, Christian (2012): Environmental factors affect soft coral-derived organic matter fluxes. 4C Coral Reef Response to Multiple Stresses: Organisms to Ecosystems. Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, ICRS2012_4C_2.pdf
Berman, T; Bronk, Deborah A (2003): Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquatic Microbial Ecology, 31, 279-305, https://doi.org/10.3354/ame031279
Bythell, J C (1990): Nutrient uptake in the reef-building coral Acropora palmata at natural environmental concentrations. Marine Ecology Progress Series, 68, 65-69, https://doi.org/10.3354/meps068065
Cardini, Ulisse; Bednarz, Vanessa N; Naumann, Malik S; van Hoytema, Nanne; Rix, Laura; Foster, Rachel A; Al-Rshaidat, Mamoon M D; Wild, Christian (2015): Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proceedings of the Royal Society B-Biological Sciences, 282(1818), 20152257, https://doi.org/10.1098/rspb.2015.2257
Carlson, C A; Hansell, Dennis A (2015): Biogeochemistry of marine dissolved organic matter (2nd edition). Academic Press
Darwin, Charles Robert (1842): FRINGING OR SHORE REEFS. In: The Structure and Distribution of Coral Reefs. CHAPTER III, University of California Press.
de Lamarck, Jean-Baptiste-Pierre-Antoine de Monet: Histoire naturelle des animaux sans vertèbres [webpage]. http://www.biodiversitylibrary.org/item/47698
Dubinsky, Zvy; Jokiel, Paul L (1994): Ratio of Energy and Nutrient Fluxes Regulates Symbiosis between Zooxanthellae and Corals [webpage]. Pacific Science, 48(3), 313-324
Fabricius, Katharina Elisabeth (2005): Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50(2), 125-146, https://doi.org/10.1016/j.marpolbul.2004.11.028
Fabricius, Katharina Elisabeth (2011): Factors Determining the Resilience of Coral Reefs to Eutrophication: A Review and Conceptual Model. In: Dubinsky, Z, Stambler, N (eds.), Coral Reefs: An Ecosystem in Transition, Springer Netherlands, Dordrecht, 493-505, https://doi.org/10.1007/978-94-007-0114-4_28
Fabricius, Katharina Elisabeth; Cséke, Szilvia; Humphrey, Craig; De'ath, Glenn (2013): Does Trophic Status Enhance or Reduce the Thermal Tolerance of Scleractinian Corals? A Review, Experiment and Conceptual Framework. PLoS ONE, 8(1), e54399, https://doi.org/10.1371/journal.pone.0054399
Fabricius, Katharina Elisabeth; Klumpp, David W (1995): Widespread mixotrophy in reef-inhabiting soft corals:the influence of depth, and colony expansion and contraction on photosynthesis. Marine Ecology Progress Series, 125, 195-204, https://doi.org/10.3354/meps125195
Falkowski, Paul G; Dubinsky, Zvy; Muscatine, Leonard; Porter, James W (1984): Light and the Bioenergetics of a Symbiotic Coral. BioScience, 34(11), 705-709, https://doi.org/10.2307/1309663
Grover, Renaud; Maguer, Jean-François; Allemand, Denis; Ferrier-Pagès, Christine (2006): Urea uptake by the scleractinian coral Stylophora pistillata. Journal of Experimental Marine Biology and Ecology, 332(2), 216-225, https://doi.org/10.1016/j.jembe.2005.11.020
Grover, Renaud; Maguer, Jean-François; Allemand, Denis; Ferrier-Pagès, Christine (2008): Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. Journal of Experimental Biology, 211(6), 860-865, https://doi.org/10.1242/jeb.012807
Haas, Andreas F; Nelson, Craig E; Wegley, Kelly Linda; Carlson, Craig A; Rohwer, Forest; Leichter, J J; Wyatt, Alex S J; Smith, Jennifer E (2011): Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity. PLoS ONE, 6(11), e27973, https://doi.org/10.1371/journal.pone.0027973
Hill, Claudia E L; Abbass, S G; Caporale, Giulia; El‐Khaled, Y C; Kuhn, Lidia Aumond; Schlenzig, T; Wild, Christian; Tilstra, Arjen (2023): Physiology of the widespread pulsating soft coral Xenia umbellata is affected by food sources, but not by water flow. Ecology and Evolution, 13(9), e10483, https://doi.org/10.1002/ece3.10483
Houlbrèque, Fanny; Ferrier‐Pagès, Christine (2009): Heterotrophy in Tropical Scleractinian Corals. Biological Reviews, 84(1), 1-17, https://doi.org/10.1111/j.1469-185X.2008.00058.x
Hutchings, P A; Kingsford, M; Hoegh-Guldberg, Ove (2019): The Great Barrier Reef: Biology, environment and management (Second edition). CSIRO Publishing
Inoue, Shihori; Kayanne, Hajime; Yamamoto, Shoji; Kurihara, Haruko (2013): Spatial community shift from hard to soft corals in acidified water. Nature Climate Change, 3(7), 683-687, https://doi.org/10.1038/nclimate1855
Jeffrey, S W; Humphrey, G F (1975): New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167(2), 191-194, https://doi.org/10.1016/S0015-3796(17)30778-3
Jensen, Frank B (2003): Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135(1), 9-24, https://doi.org/10.1016/S1095-6433(02)00323-9
Kassambara, A (2020): Pipe-friendly framework for basic statistical tests. R Package Version 0.6. 0.
Kim, Sohyoung; Wild, Christian; Tilstra, Arjen (2022): Effective asexual reproduction of a widespread soft coral: comparative assessment of four different fragmentation methods. PeerJ, 10, e12589, https://doi.org/10.7717/peerj.12589
Kline, David I; Kuntz, N M; Breitbart, Mya; Knowlton, N; Rohwer, Forest (2006): Role of elevated organic carbon levels and microbial activity in coral mortality. Marine Ecology Progress Series, 314, 119-125, https://doi.org/10.3354/meps314119
Klinke, Annabell; Mezger, Selma D; Thobor, Bianca; Tilstra, Arjen; El-Khaled, Yusuf C; Wild, Christian (2022): Phosphate enrichment increases the resilience of the pulsating soft coral Xenia umbellata to warming. Frontiers in Marine Science, 9, 1026321, https://doi.org/10.3389/fmars.2022.1026321
Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia (2013): Benefit of pulsation in soft corals. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8978-8983, https://doi.org/10.1073/pnas.1301826110
Kuntz, N M; Kline, David I; Sandin, S A; Rohwer, Forest (2005): Pathologies and mortality rates caused by organic carbon and nutrient stressors in three Caribbean coral species. Marine Ecology Progress Series, 294, 173-180, https://doi.org/10.3354/meps294173
Lalas, Jue Alef A; Jamodiong, Emmeline A; Reimer, James D (2024): Spatial patterns of soft coral (Octocorallia) assemblages in the shallow coral reefs of Okinawa Island, Ryukyu Archipelago, Japan: Dominance on highly disturbed reefs. Regional Studies in Marine Science, 71, 103405, https://doi.org/10.1016/j.rsma.2024.103405
Lange, K; Reynaud, Stéphanie; de Goeij, Jasper M; Ferrier-Pagès, Christine (2023): The effects of dissolved organic matter supplements on the metabolism of corals under heat stress. Limnology and Oceanography, 68(12), 2774-2788, https://doi.org/10.1002/lno.12456
Larkin, Meryl F; Davis, Tom R; Harasti, David; Cadiou, Gwenael; Poulos, Davina E; Smith, S D A (2021): The rapid decline of an Endangered temperate soft coral species. Estuarine, Coastal and Shelf Science, 255, 107364, https://doi.org/10.1016/j.ecss.2021.107364
Laws, Edward A (1981): Aquatic Pollution. An Introductory Text. (3rd edition). John Wiley & Sons, Inc.
LeGresley, M; McDermott, G (2010): Counting Chamber Methods for Quantitative Phytoplankton Analysis: Haemocytometer, Palmer-Maloney Cell and Sedgewick-Rafter Cell. In: B. Karlson, C. Cusack and E. Bresnan, Eds., Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis, IOC Manuals and Guides No. 55, UNESCO, Paris, 25-30 pp
Lenth, R (2024): Estimated Marginal Means, aka Least-Squares Means [software]. R package version 1.10.0 [Computer software]., https://CRAN.R-project.org/package=emmeans
Lenz, E A; Bramanti, Lorenzo; Lasker, Howard R; Edmunds, Peter J (2015): Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs, 34(4), 1099-1109, https://doi.org/10.1007/s00338-015-1315-x
Lewis, John B (1982): Feeding behaviour and feeding ecology of the Octocorallia (Coelenterata: Anthozoa). Journal of Zoology, 196(3), 371-384, https://doi.org/10.1111/j.1469-7998.1982.tb03509.x
Liefmann, Stephanie; Järnegren, Johanna; Johnsen, Geir; Murray, Fiona (2018): Eco-physiological responses of cold-water soft corals to anthropogenic sedimentation and particle shape. Journal of Experimental Marine Biology and Ecology, 504, 61-71, https://doi.org/10.1016/j.jembe.2018.02.009
Marubini, Francesca (1996): The physiological response of hermatypic corals to nutrient enrichment [dissertation]. University of Glasgow, https://theses.gla.ac.uk/id/eprint/5666
Maucieri, Dominique G; Baum, Julia K (2021): Impacts of heat stress on soft corals, an overlooked and highly vulnerable component of coral reef ecosystems, at a central equatorial Pacific atoll. Biological Conservation, 262, 109328, https://doi.org/10.1016/j.biocon.2021.109328
Mclean, Elizabeth L; Rützler, Klaus; Pooler, Penelope S (2015): Competing for Space: Factors That Lead to Sponge Overgrowth When Interacting with Octocoral. Open Journal of Marine Science, 05(01), 64-80, https://doi.org/10.4236/ojms.2015.51007
Mezger, Selma D; Klinke, Annabell; Tilstra, Arjen; El-Khaled, Yusuf C; Thobor, Bianca; Wild, Christian (2022): The widely distributed soft coral Xenia umbellata exhibits high resistance against phosphate enrichment and temperature increase. Scientific Reports, 12(1), 22135, https://doi.org/10.1038/s41598-022-26325-5
Mitchell, Ralph; Chet, Ilan (1975): Bacterial attack of corals in polluted seawater. Microbial Ecology, 2(3), 227-233, https://doi.org/10.1007/BF02010442
Muscatine, Leonard; Falkowski, Paul G; Porter, James W; Dubinsky, Zvy (1984): Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. 222(1227), 181-202, https://doi.org/10.1098/rspb.1984.0058
Muscatine, Leonard; Porter, James W (1977): Reef Corals: Mutualistic Symbioses Adapted to Nutrient-Poor Environments. BioScience, 27(7), 454-460, https://doi.org/10.2307/1297526
Pogoreutz, Claudia; Rädecker, Nils; Cárdenas, Anny; Gärdes, Astrid; Voolstra, Christian R; Wild, Christian (2017): Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Global Change Biology, 23(9), 3838-3848, https://doi.org/10.1111/gcb.13695
Repeta, Daniel J (2015): Chemical Characterization and Cycling of Dissolved Organic Matter. In: Biogeochemistry of Marine Dissolved Organic Matter, Elsevier, 21-63, https://doi.org/10.1016/B978-0-12-405940-5.00002-9
Romankevich, Evgeny A (1984): Geochemistry of organic matter in the Ocean. Berlin, Heidelberg, Tokyo: Springer-Verlag, 334 pp
Sebens, K P; Vandersall, K S; Savina, L A; Graham, K R (1996): Zooplankton capture by two scleractinian corals,Madracis mirabilis andMontastrea cavernosa, in a field enclosure. Marine Biology, 127(2), 303-317, https://doi.org/10.1007/BF00942116
Shimoda, T; Ichikawa, T; Matsukawa, Y (1998): Nutrient conditions and their effects on coral growth in reefs around Ryukyu Islands. Bulletin of the National Research Institute of Fisheries Science (Japan), 12, 71-80
Siebeck, U E; Marshall, N J; Klüter, A; Hoegh-Guldberg, Ove (2006): Monitoring coral bleaching using a colour reference card. Coral Reefs, 25(3), 453-460, https://doi.org/10.1007/s00338-006-0123-8
Siebers, Dietrich (1982): Bacterial - Invertebrate Interactions in Uptake of Dissolved Organic Matter. American Zoologist, 22(3), 723-733, https://doi.org/10.1093/icb/22.3.723
Simancas-Giraldo, Susana Marcela; Xiang, Nan; Kennedy, Meghan Moger; Nafeh, Rassil; Zelli, Edoardo; Wild, Christian (2021): Photosynthesis and respiration of the soft coral Xenia umbellata respond to warming but not to organic carbon eutrophication. PeerJ, 9, e11663, https://doi.org/10.7717/peerj.11663
Smith, Jennifer E; Shaw, Morrigan; Edwards, Rob A; Obura, David; Pantos, Olga; Sala, Enric; Sandin, S A; Smriga, Steven; Hatay, Mark; Rohwer, Forest L (2006): Indirect effects of algae on coral: algae‐mediated, microbe‐induced coral mortality. Ecology Letters, 9(7), 835-845, https://doi.org/10.1111/j.1461-0248.2006.00937.x
Stuhldreier, Ines; Sánchez-Noguera, Celeste; Rixen, Tim; Cortés, Jorge; Morales, Alvaro; Wild, Christian (2015): Effects of Seasonal Upwelling on Inorganic and Organic Matter Dynamics in the Water Column of Eastern Pacific Coral Reefs. PLoS ONE, 10(11), e0142681, https://doi.org/10.1371/journal.pone.0142681
Szmant-Froelich, A; Johnson, V; Hoehn, T; Battey, J; Smith, G L; Fleischmann, E; Porter, J (1982): The physiological effects of oil drilling muds on the Caribbean coral Montastrea. In The reef and man: Proceedings of the Fourth International Coral Reef Symposium. Marine Sciences Center., 1, 163-168 pp
Tanaka, Yasuaki; Nakajima, Ryota (2018): Dissolved Organic Matter in Coral Reefs: Distribution, Production, and Bacterial Consumption. In: Iguchi, A, Hongo, C (eds.), Coral Reef Studies of Japan, Coral Reefs of the World, 13, Springer Singapore, Singapore, 7-27, https://doi.org/10.1007/978-981-10-6473-9_2
Thobor, Bianca; Tilstra, Arjen; Bourne, David G; Springer, Karin; Mezger, Selma D; Struck, Ulrich; Bockelmann, Franziska; Zimmermann, Lisa; Yánez Suárez, Ana Belén; Klinke, Annabell; Wild, Christian (2022): The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low. Scientific Reports, 12(1), 16788, https://doi.org/10.1038/s41598-022-21110-w
Thornton, Daniel C O (2014): Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology, 49(1), 20-46, https://doi.org/10.1080/09670262.2013.875596
Tilstra, Arjen; Braxator, Lorena; Thobor, Bianca; Mezger, Selma D; Hill, Claudia E L; El-Khaled, Yusuf C; Caporale, Giulia; Kim, Sohyoung; Wild, Christian (2023): Short-term ocean acidification decreases pulsation and growth of the widespread soft coral Xenia umbellata. PLoS ONE, 18(11), e0294470, https://doi.org/10.1371/journal.pone.0294470
Tilstra, Arjen; El-Khaled, Yusuf C; Meier, Saskia; Wild, Christian (2022): Invasive upside-down jellyfish tolerate organic eutrophication and warming. Bulletin of Marine Science, 98(3), 381-392, https://doi.org/10.5343/bms.2021.0051
Tilstra, Arjen; Wijgerde, Tim; Dini-Andreote, Francisco; Eriksson, Britas Klemens; Salles, Joana Falcão; Pen, Ido; Osinga, Ronald; Wild, Christian (2017): Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata. PeerJ, 5, e3802, https://doi.org/10.7717/peerj.3802
Toledo-Rodriguez, Daniel A; Veglia, Alex; Jimenez Marrero, Nilda M; Gomez-Samot, Joyce M; McFadden, Catherine S; Weil, Ernesto; Schizas, Nikolaos V (preprint): Shadows over Caribbean reefs: Identification of a new invasive soft coral species, Xenia umbellata , in southwest Puerto Rico. https://doi.org/10.1101/2024.05.07.592775
Tomascik, T; Sander, F (1985): Effects of eutrophication on reef-building corals. Marine Biology, 87(2), 143-155, https://doi.org/10.1007/BF00539422
Tuholske, Cascade; Halpern, Benjamin S; Blasco, Gordon; Villasenor, Juan Carlos; Frazier, Melanie; Caylor, Kelly (2021): Mapping global inputs and impacts from of human sewage in coastal ecosystems. PLoS ONE, 16(11), e0258898, https://doi.org/10.1371/journal.pone.0258898
Verseveldt, J (1965): Report on the Octocorallia (Stolonifera and Alcyonacea) of the Israel South Red Sea Expedition 1962, with notes on other collections from the Red Sea. Sea Fish Res Stn Haifa Bull, 14, 27-47
Vollstedt, Svea; Xiang, Nan; Simancas-Giraldo, Susana Marcela; Wild, Christian (2020): Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ, 8, e9182, https://doi.org/10.7717/peerj.9182
Walker, Diana I; Ormond, R F G (1982): Coral death from sewage and phosphate pollution at Aqaba, Red Sea. Marine Pollution Bulletin, 13(1), 21-25, https://doi.org/10.1016/0025-326X(82)90492-1
Wijgerde, Tim; Henkemans, Peter; Osinga, Ronald (2012): Effects of irradiance and light spectrum on growth of the scleractinian coral Galaxea fascicularis — Applicability of LEP and LED lighting to coral aquaculture. Aquaculture, 344-349, 188-193, https://doi.org/10.1016/j.aquaculture.2012.03.025
Wild, Christian; Niggl, W; Naumann, Malik S; Haas, Andreas F (2010): Organic matter release by Red Sea coral reef organisms—potential effects on microbial activity and in situ O2 availability. Marine Ecology Progress Series, 411, 61-71, https://doi.org/10.3354/meps08653
Xiang, Nan; Hassenrück, Christiane; Pogoreutz, Claudia; Rädecker, Nils; Simancas-Giraldo, Susana Marcela; Voolstra, Christian R; Wild, Christian; Gärdes, Astrid (2022): Contrasting Microbiome Dynamics of Putative Denitrifying Bacteria in Two Octocoral Species Exposed to Dissolved Organic Carbon (DOC) and Warming. Applied and Environmental Microbiology, 88(2), e01886-21, https://doi.org/10.1128/AEM.01886-21
Zelli, Edoardo; Simancas-Giraldo, Susana Marcela; Xiang, Nan; Dessì, Claudia; Katzer, Nadim Daniel; Tilstra, Arjen; Wild, Christian (2023): Individual and combined effect of organic eutrophication (DOC) and ocean warming on the ecophysiology of the Octocoral Pinnigorgia flava. PeerJ, 11, e14812, https://doi.org/10.7717/peerj.14812
Zhang, Hucai; Chen, Jingan; Haffner, Douglas G (2023): Plateau Lake Water Quality and Eutrophication: Status and Challenges. Water, 15(2), 337, https://doi.org/10.3390/w15020337
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Size:
8 datasets
Download Data
Datasets listed in this bundled publication
- Hill, CEL; Rücker, J; Eichhorn, N et al. (2025): Algal symbiont density of coral Xenia umbellata in a aquarium experiment. https://doi.org/10.1594/PANGAEA.974806
- Hill, CEL; Rücker, J; Eichhorn, N et al. (2025): Background parameters of coral Xenia umbellata in a aquarium experiment. https://doi.org/10.1594/PANGAEA.974807
- Hill, CEL; Rücker, J; Eichhorn, N et al. (2025): Chlorophyll-a per algal cell of coral Xenia umbellata in a aquarium experiment. https://doi.org/10.1594/PANGAEA.974805
- Hill, CEL; Rücker, J; Eichhorn, N et al. (2025): Colouration of coral Xenia umbellata in a aquarium experiment. https://doi.org/10.1594/PANGAEA.974801
- Hill, CEL; Rücker, J; Eichhorn, N et al. (2025): Mortality of coral Xenia umbellata in a aquarium experiment. https://doi.org/10.1594/PANGAEA.974804
- Hill, CEL; Rücker, J; Eichhorn, N et al. (2025): Oxygen fluxes of coral Xenia umbellata in a aquarium experiment. https://doi.org/10.1594/PANGAEA.974803
- Hill, CEL; Rücker, J; Eichhorn, N et al. (2025): Pulsation rate of coral Xenia umbellata in a aquarium experiment. https://doi.org/10.1594/PANGAEA.974800
- Hill, CEL; Rücker, J; Eichhorn, N et al. (2025): Specific growth rate of coral Xenia umbellata in a aquarium experiment. https://doi.org/10.1594/PANGAEA.974802