Spruzen, Charlotte; Bradbury, Harold J; Kast, Emma R.; Turchyn, Alexandra V (2024): A compilation of published pyrite sulfur isotopic compositions from the past 165 million years [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.972993
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
This dataset contains a compilation of the sulfur isotopic composition of pyrite from outcrop and sediment cores over the past 165 million years. The compilation includes 3754 data points from 94 publications, compiled in 2020, 2021, and 2023. The data was collected in order to investigate the relationship between the sulfur isotopic composition of pyrite and depositional environment over the Cenozoic and Late Mesozoic, and has global spatial coverage. Compiled sediment core data includes the sulfur isotopic composition of pyrite, age, water depth, location, methane content, lithology, and total organic carbon. Compiled outcrop data includes the sulfur isotopic composition of pyrite, age, generalized water depth based on sedimentological criteria, and lithology.
Supplement to:
Spruzen, Charlotte; Bradbury, Harold J; Kast, Emma R.; Turchyn, Alexandra V (2024): The sulfur isotopic composition of Cenozoic pyrite is affected by methane content and depositional environment. Earth and Planetary Science Letters, 648, 119097, https://doi.org/10.1016/j.epsl.2024.119097
Source:
Aplin, Andrew C; Bishop, A N; Clayton, C J; Kearsley, A T; Mossmann, J-R; Patience, R L; Rees, A W G; Rowland, Steve J (1992): A lamina-scale geochemical and sedimentological study of sediments from the Peru Margin (Site 680, ODP Leg 112). Geological Society, London, Special Publications, 64(1), 131-149, https://doi.org/10.1144/GSL.SP.1992.064.01.09
Arning, Esther T; Birgel, Daniel; Brunner, B; Peckmann, Jörn (2009): Bacterial formation of phosphatic laminites off Peru. Geobiology, 7, 295-307, https://doi.org/10.1111/j.1472-4669.2009.00197.x
Baioumy, Hassan Mohamed (2011): Rare earth elements and sulfur and strontium isotopes of upper Cretaceous phosphorites in Egypt. Cretaceous Research, 32(3), 368-377, https://doi.org/10.1016/j.cretres.2011.01.008
Baioumy, Hassan Mohamed; Ismael, Ismael S (2010): Factors controlling the compositional variations among the marine and non-marine black shales from Egypt. International Journal of Coal Geology, 83(1), 35-45, https://doi.org/10.1016/j.coal.2010.04.005
Berndmeyer, Christine; Birgel, Daniel; Brunner, Benjamin; Wehrmann, Laura Mariana; Jöns, Niels; Bach, Wolfgang; Arning, Esther T; Föllmi, Karl B; Peckmann, Jörn (2012): The influence of bacterial activity on phosphorite formation in the Miocene Monterey Formation, California. Palaeogeography, Palaeoclimatology, Palaeoecology, 317-318, 171-181, https://doi.org/10.1016/j.palaeo.2012.01.004
Bloch, John; Krouse, H R (1992): Sulfide Diagenesis and Sedimentation in the Albian Harmon Member, Western Canada. Journal of Sedimentary Research, Vol. 62, https://doi.org/10.1306/D42678CF-2B26-11D7-8648000102C1865D
Böning, Philipp; Brumsack, Hans-Jürgen; Böttcher, Michael Ernst; Schnetger, Bernhard; Kriete, Cornelia; Kallmeyer, Jens; Borchers, Sven Lars (2004): Geochemistry of Peruvian near-surface sediments. Geochimica et Cosmochimica Acta, 68(21), 4429-4451, https://doi.org/10.1016/j.gca.2004.04.027
Böttcher, Michael Ernst; Hespenheide, Britta; Llobet-Brossa, Enrique; Beardsley, Christine; Larsen, Ole; Schramm, Andreas; Wieland, Andrea; Böttcher, Gerd; Berninger, Ulrike-G; Amann, Rudolf (2000): The biogeochemistry, stable isotope geochemistry, and microbial community structure of a temperate intertidal mudflat: an integrated study. Continental Shelf Research, 20(12-13), 1749-1769, https://doi.org/10.1016/S0278-4343(00)00046-7
Böttcher, Michael Ernst; Lepland, Aivo (2000): Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: Evidence from stable isotopes and pyrite textures. Journal of Marine Systems, 25(3-4), 299-312, https://doi.org/10.1016/S0924-7963(00)00023-3
Böttcher, Michael Ernst; Rinna, J; Warning, Birgit; Wehausen, Rolf; Howell, M W; Schnetger, Bernhard; Stein, Ruediger; Brumsack, H-J; Rullkötter, Jürgen (2003): Geochemistry of sediments from the connection between the western and the eastern Mediterranean Sea (Strait of Sicily, ODP Site 963). Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 165-194, https://doi.org/10.1016/S0031-0182(02)00604-1
Bonnell, Linda; Anderson, Thomas F (1987): Sulfur isotopic variations in nodular and disseminated pyrite: Hole 603B. In: van Hinte, JE; Wise, SW Jr; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 93, 1257-1262, https://doi.org/10.2973/dsdp.proc.93.157.1987
Brüchert, Volker; Knoblauch, Christian; Jørgensen, Bo Barker (2001): Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments. Geochimica et Cosmochimica Acta, 65(5), 763-776, https://doi.org/10.1016/S0016-7037(00)00557-3
Brüchert, Volker; Pérez, M E; Lange, Carina Beatriz (2000): Coupled primary production, benthic foraminiferal assemblage, and sulfur diagenesis in organic-rich sediments of the Benguela upwelling system. Marine Geology, 163(1-4), 27-40, https://doi.org/10.1016/S0025-3227(99)00099-7
Brüchert, Volker; Pratt, Lisa M (1999): Stable Sulfur Isotopic Evidence for Historical Changes of Sulfur Cycling in Estuarine Sediments from Northern Florida. Aquatic Geochemistry, 5(3), 249-268, https://doi.org/10.1023/A:1009661812641
Brunner, Benjamin; Krastel, Sebastian; Arnold, Gail Lee; Wehrmann, Laura Mariana; Formolo, Michael J; Beck, Antje; Bates, Steven M; Henkel, Susann; Kasten, Sabine; Lyons, Timothy W (2017): Sulfur Cycling in an Iron Oxide-Dominated, Dynamic Marine Depositional System: The Argentine Continental Margin. Frontiers in Earth Science, 5, 33, https://doi.org/10.3389/feart.2017.00033
Bryant, Roger N; Jones, Clive M; Raven, Morgan Reed; Owens, Jeremy D; Fike, David A (2020): Shifting modes of iron sulfidization at the onset of OAE-2 drive regional shifts in pyrite δ34S records. Chemical Geology, 553, 119808, https://doi.org/10.1016/j.chemgeo.2020.119808
Calvert, Stephen E; Thode, H G; Yeung, D; Karlin, Robert Ellis (1996): A stable isotope study of pyrite formation in the Late Pleistocene and Holocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 60(7), 1261-1270, https://doi.org/10.1016/0016-7037(96)00020-8
Chanton, Jeffrey P; Martens, Christopher S; Paull, Charles K; Coston, Jennifer A (1993): Sulfur isotope and porewater geochemistry of Florida escarpment seep sediments. Geochimica et Cosmochimica Acta, 57(6), 1253-1266, https://doi.org/10.1016/0016-7037(93)90062-2
Chen, Yue-Gau; Liu, Jack C L; Shieh, Yuch-Ning; Liu, Tsung-Kwei (2004): Late Pleistocene to Holocene environmental changes as recorded in the sulfur geochemistry of coastal plain sediments, southwestern Taiwan. Journal of Asian Earth Sciences, 24(2), 213-224, https://doi.org/10.1016/j.jseaes.2003.10.004
Dale, Andrew W; Brüchert, Volker; Alperin, Marc J; Regnier, Pierre (2009): An integrated sulfur isotope model for Namibian shelf sediments. Geochimica et Cosmochimica Acta, 73(7), 1924-1944, https://doi.org/10.1016/j.gca.2008.12.015
Dantas, Rafaela Cardoso; Hassan, Muhammad Bin; Cruz, Francisco William; Jovane, Luigi (2022): Evidence for methane seepage in South Atlantic from the occurrence of authigenic gypsum and framboidal pyrite in deep-sea sediments. Marine and Petroleum Geology, 142, 105727, https://doi.org/10.1016/j.marpetgeo.2022.105727
De Craen, M; Swennen, Rudy; Keppens, E M; Macaulay, Calum I; Kiriakoulakis, Kostas (1999): Bacterially mediated formation of carbonate concretions in the Oligocene Boom Clay of northern Belgium. Journal of Sedimentary Research, 69(5), 1098-1106, https://doi.org/10.2110/jsr.69.1098
Derkachev, A N; Nikolaeva, N A; Mozherovsky, A V; Grigorieva, T N; Ivanova, E D; Pletnev, S P; Barinov, N N; Chubarov, Valerii M (2007): Mineralogical and geochemical indicators of anoxic sedimentation conditions in local depressions within the Sea of Okhotsk in the late Pleistocene-Holocene. Translated from Tikhookeanskaya Geologiya, 2007, 26(3), 3-33, Russian Journal of Pacific Geology, 1(3), 203-229, https://doi.org/10.1134/S1819714007030013
Dinur, Dorit; Spiro, Baruch; Aizenshtat, Zeev A (1980): The distribution and isotopic composition of sulfur in organic-rich sedimentary rocks. Chemical Geology, 31, 37-51, https://doi.org/10.1016/0009-2541(80)90066-2
Fisher, Ian St John (1983): Studies on the Formation of Pyrite in Jurassic Shales [thesis]. University of Leicester, https://hdl.handle.net/2381/27633
Gautier, Donald L (1985): Sulfur/carbon ratios and sulfur isotope composition of some Cretaceous shales from the Western Interior of North America. U.S. Geological Survey, 85-514, https://doi.org/10.3133/ofr85514
Gautier, Donald L (1987): Isotopic composition of pyrite: Relationship to organic matter type and iron availability in some North American cretaceous shales. Chemical Geology: Isotope Geoscience section, 65(3-4), 293-303, https://doi.org/10.1016/0168-9622(87)90009-1
Goldhaber, Martin B; Kaplan, Isaac R (1980): Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the gulf of California. Marine Chemistry, 9(2), 95-143, https://doi.org/10.1016/0304-4203(80)90063-8
Gomes, Maya L; Hurtgen, Matthew T; Sageman, Bradley B (2016): Biogeochemical sulfur cycling during Cretaceous oceanic anoxic events: A comparison of OAE1a and OAE2. Paleoceanography, 31(2), 233-251, https://doi.org/10.1002/2015PA002869
Gong, Shanggui; Izon, Gareth; Peng, Yongbo; Cao, Yunchen; Liang, Qiangyong; Peckmann, Jörn; Chen, Duofu; Feng, Dong (2022): Multiple sulfur isotope systematics of pyrite for tracing sulfate-driven anaerobic oxidation of methane. Earth and Planetary Science Letters, 597, 117827, https://doi.org/10.1016/j.epsl.2022.117827
Habicht, Kirsten S; Canfield, Donald E (2001): Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology, 29(6), 555, https://doi.org/10.1130/0091-7613(2001)029%3C0555:IFBSRN%3E2.0.CO;2
Hackley, Keith C; Anderson, Thomas F (1986): Sulfur isotopic variations in low-sulfur coals from the Rocky Mountain region. Geochimica et Cosmochimica Acta, 50(8), 1703-1713, https://doi.org/10.1016/0016-7037(86)90132-8
Henneke, Else; Luther, George W III; de Lange, Gert J; Hoefs, J (1997): Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochimica et Cosmochimica Acta, 61(2), 307-321, https://doi.org/10.1016/S0016-7037(96)00355-9
Hetzel, Almut; Böttcher, Michael Ernst; Wortmann, Ulrich G; Brumsack, Hans-Jürgen (2009): Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273(3-4), 302-328, https://doi.org/10.1016/j.palaeo.2008.11.005
Houghton, Jennifer; Scarponi, Daniele; Capraro, Luca; Fike, David A (2022): Impact of sedimentation, climate and sea level on marine sedimentary pyrite sulfur isotopes: Insights from the Valle di Manche section (Lower-Middle Pleistocene, southern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 585, 110730, https://doi.org/10.1016/j.palaeo.2021.110730
Jeans, Christopher V; Turchyn, Alexandra V; Hu, Xu-Fang (2016): Sulfur isotope patterns of iron sulfide and barite nodules in the Upper Cretaceous Chalk of England and their regional significance in the origin of coloured chalks. Acta Geologica Polonica, 66(2), 227-256, https://doi.org/10.1515/agp-2016-0010
Jenkins, Kathryn Ann (2005): Sulfur and oxygen isotope characterization of an Eocene playa deposit, northern High Plains, and rainwater sulfate, Baton Rouge, USA [thesis]. Louisiana State University and Agricultural & Mechanical College, https://doi.org/10.31390/gradschool_theses.3015
Jørgensen, Bo Barker (2005): Chemical composition and stable sulfur isotopes in sediment core KOT97-3GC [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.266985
Jørgensen, Bo Barker; Böttcher, Michael Ernst; Lüschen, Holger; Neretin, Lev N; Volkov, Igor I (2004): Anaerobic methane oxidation and a seep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta, 68(9), 2095-2118, https://doi.org/10.1016/j.gca.2003.07.017
Kajiwara, Yoshimichi; Kaiho, Kunio (1992): Oceanic anoxia at the cretaceous/tertiary boundary supported by the sulfur isotopic record. Palaeogeography, Palaeoclimatology, Palaeoecology, 99(1-2), 151-162, https://doi.org/10.1016/0031-0182(92)90012-T
Kaplan, Isaac R; Emery, Kenneth O; Rittenbebg, S C (1963): The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochimica et Cosmochimica Acta, 27(4), 297-331, https://doi.org/10.1016/0016-7037(63)90074-7
Kinoshita, Masataka; Tobin, Harold; Ashi, Juichiro; Kimura, Gaku; Lallemant, Siegfried J; Screaton, Elizabeth J; Curewitz, Daniel; Masago, Hideki; Moe, Kyaw Thu; Expedition 314/315/316 Scientists (2009): NanTroSEIZE Stage 1. Proceedings of the IODP, International Ocean Discovery Program, 314/315/316, https://doi.org/10.2204/iodp.proc.314315316.2009
Kristall, Brian; Jacobson, Andrew D; Sageman, Bradley B; Hurtgen, Matthew T (2018): Coupled strontium-sulfur cycle modeling and the Early Cretaceous sulfur isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 496, 305-322, https://doi.org/10.1016/j.palaeo.2018.01.047
Krouse, H R; Brown, H M; Farquharson, R B (1977): Sulfur Isotopic Composition in DSDP Leg 37 Cores. In: Aumento, F, Melson, WG, et al., Initial Reports of the Deep Sea Drilling Project, 37, Initial Reports of the Deep Sea Drilling Project, 37, U.S. Government Printing Office, https://doi.org/10.2973/dsdp.proc.37.144.1977
Lein, Alla Yu; Kudryavtseva, A I; Matrosov, A G; Zyakun, A M (1976): (Table 1) Isotopic composition of pyrite sulfur from sediments of Core DM9-663, Gulf of California [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.743349
Leśniak, Paweł M; Łącka, Bożena; Krajewski, Krzysztof P; Zawidzki, Paweł; Hladikova, Jana (2003): Extreme sulfur isotopic fractionation between sulfate of carbonate fluorapatite and authigenic pyrite in the Neocomian sequence at Wąwał, Central Poland. Chemical Geology, 200(3-4), 325-337, https://doi.org/10.1016/S0009-2541(03)00198-0
Lin, Qi; Wang, Jiasheng; Algeo, Thomas J; Sun, Fei; Lin, Rongxiao (2016): Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea. Marine Geology, 379, 100-108, https://doi.org/10.1016/j.margeo.2016.05.016 (b)
Lin, Zhiyong; Sun, Xiaoming; Peckmann, Jörn; Lu, Yang; Xu, Li; Strauss, Harald; Zhou, Haoyang; Gong, Junli; Lu, Hongfeng; Teichert, Barbara M A (2016): How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea. Chemical Geology, 440, 26-41, https://doi.org/10.1016/j.chemgeo.2016.07.007 (a)
Lin, Zhiyong; Sun, Xiaoming; Strauss, Harald; Lu, Yang; Gong, Junli; Xu, Li; Lu, Hongfeng; Teichert, Barbara M A; Peckmann, Jörn (2017): Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: Evidence from authigenic pyrite in seepage areas of the South China Sea. Geochimica et Cosmochimica Acta, 211, 153-173, https://doi.org/10.1016/j.gca.2017.05.015
Liu, Jiarui; Antler, Gilad; Pellerin, André; Izon, Gareth; Dohrmann, Ingrid; Findlay, Alyssa J; Røy, Hans; Ono, Shuhei; Turchyn, Alexandra V; Kasten, Sabine; Jørgensen, Bo Barker (2021): Isotopically "heavy" pyrite in marine sediments due to high sedimentation rates and non-steady-state deposition. Geology, 49(7), 816-821, https://doi.org/10.1130/G48415.1
Liu, Jiarui; Pellerin, André; Antler, Gilad; Kasten, Sabine; Findlay, Alyssa J; Dohrmann, Ingrid; Røy, Hans; Turchyn, Alexandra V; Jørgensen, Bo Barker (2020): Early diagenesis of iron and sulfur in Bornholm Basin sediments: The role of near-surface pyrite formation. Geochimica et Cosmochimica Acta, 284, 43-60, https://doi.org/10.1016/j.gca.2020.06.003 (b)
Liu, Xi-Ting; Fike, David A; Li, Anchun; Dong, Jiang; Xu, F; Zhuang, Guang-Chao; Rendle-Bühring, Rebecca; Wan, Shiming (2019): Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene. Chemical Geology, 505, 66-75, https://doi.org/10.1016/j.chemgeo.2018.12.014
Liu, Xiting; Li, Anchun; Fike, David A; Dong, Jiang; Xu, F; Zhuang, Guangchao; Fan, Daidu; Yang, Zuosheng; Wang, H (2020): Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation. Marine Geology, 429, 106307, https://doi.org/10.1016/j.margeo.2020.106307 (a)
Lyons, Timothy W (1997): Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochimica et Cosmochimica Acta, 61(16), 3367-3382, https://doi.org/10.1016/S0016-7037(97)00174-9
Lyons, Timothy W; Murray, Richard W; Pearson, D Graham (2000): A comparative study of diagenetic pathways in sediments of the Caribbean Sea: highlights from pore-water results. In: Leckie, RM; Sigurdsson, H; Acton, GD; Draper, G (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 165, 1-12, https://doi.org/10.2973/odp.proc.sr.165.020.2000
Lyons, Timothy W; Werne, Josef P; Hollander, David J; Murray, Richard W (2003): Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology, 195(1-4), 131-157, https://doi.org/10.1016/S0009-2541(02)00392-3
Macaulay, Calum I; Haszeldine, R Stuart; Fallick, Anthony E (1993): Distribution, Chemistry, Isotopic Composition and Origin of Diagenetic Carbonates: Magnus Sandstone, North Sea. Journal of Sedimentary Research, Vol. 63, https://doi.org/10.1306/D4267A82-2B26-11D7-8648000102C1865D
Masuzawa, Toshiyuki; Takada, Jitsuya; Matsushita, Rokuji (1992): Trace-element geochemistry of sediments and sulfur isotope geochemistry of framboidal pyrite from Site 795, Leg 127, Japan Sea. In: Pisciotto, KA; Ingle, JCJr.; von Breymann, MT; Barron, J; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 127/128(1), 705-717, https://doi.org/10.2973/odp.proc.sr.127128-1.179.1992
McKay, Jennifer L; Longstaffe, Fred J (2003): Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, Western Interior Basin. Sedimentary Geology, 157(3-4), 175-195, https://doi.org/10.1016/S0037-0738(02)00233-6
Miao, Xiaoming; Feng, Xiuli; Liu, Xi-Ting; Li, J; Wei, Jiangong (2021): Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite. Marine and Petroleum Geology, 133, 105231, https://doi.org/10.1016/j.marpetgeo.2021.105231
Mossmann, Jean-Remi; Aplin, Andrew C; Curtis, Charles D; Coleman, Max L (1991): Geochemistry of inorganic and organic sulphur in organic-rich sediments from the Peru margin. Geochimica et Cosmochimica Acta, 55(12), 3581-3595, https://doi.org/10.1016/0016-7037(91)90057-C
Muramoto, Jo Ann; Honjo, Susumu; Fry, Brian; Hay, Bernward J; Howarth, Robert W; Cisne, John L (1991): Sulfur, iron and organic carbon fluxes in the Black Sea: sulfur isotopic evidence for origin of sulfur fluxes. Deep Sea Research Part A. Oceanographic Research Papers, 38, S1151-S1187, https://doi.org/10.1016/S0198-0149(10)80029-9
Neretin, Lev N; Böttcher, Michael Ernst; Jørgensen, Bo Barker; Volkov, Igor I; Lüschen, Holger; Hilgenfeldt, Katharina (2004): Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 68(9), 2081-2093, https://doi.org/10.1016/S0016-7037(03)00450-2
Ogawa, Yusuke; Takahashi, Kozo; Yamanaka, Toshiro; Onodera, Jonaotaro (2009): Significance of euxinic condition in the middle Eocene paleo-Arctic basin: A geochemical study on the IODP Arctic Coring Expedition 302 sediments. Earth and Planetary Science Letters, 285(1-2), 190-197, https://doi.org/10.1016/j.epsl.2009.06.011
Owens, Jeremy D; Lyons, Timothy W; Hardisty, Dalton S; Lowery, Chris M; Lu, Zunli; Lee, Bridget; Jenkyns, Hugh C (2017): Patterns of local and global redox variability during the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy. Sedimentology, 64(1), 168-185, https://doi.org/10.1111/sed.12352
Pasquier, Virgil; Bryant, Roger N; Fike, David A; Halevy, Itay (2021): Strong local, not global, controls on marine pyrite sulfur isotopes. Science Advances, 7(9), eabb7403, https://doi.org/10.1126/sciadv.abb7403 (a)
Pasquier, Virgil; Fike, David A; Halevy, Itay (2021): Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone. Nature Communications, 12(1), 4403, https://doi.org/10.1038/s41467-021-24753-x (b)
Pasquier, Virgil; Sansjofre, Pierre; Rabineau, Marina; Revillon, Sidonie; Houghton, Jennifer; Fike, David A (2017): Pyrite sulfur isotopes reveal glacial−interglacial environmental changes. Proceedings of the National Academy of Sciences, 201618245, https://doi.org/10.1073/pnas.1618245114
Passier, Hilde F; Bosch, Hendrik-Jan; Nijenhuis, Ivar A; Lourens, Lucas Joost; Böttcher, Michael Ernst; Leenders, Anke; Sinninghe Damsté, Jaap S; de Lange, Gert J; de Leeuw, Jan W (1999): Sulphidic Mediterranean surface waters during Pliocene sapropel formation. Nature, 397(6715), 146-149, https://doi.org/10.1038/16441
Peterson, Bruce J; Howarth, Robert W (1987): Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt‐marsh estuaries of Sapelo Island, Georgia1. Limnology and Oceanography, 32(6), 1195-1213, https://doi.org/10.4319/lo.1987.32.6.1195
Pimenov, Nikolay V; Davydova, I A; Rusanov, Igor I (1994): (Table 5-3) Sulfate reduction rate and isotope compositions of sulfur in Atlantic bottom sediments of Poligon I near the Congo River mouth [dataset]. Institute of Microbiology, Russian Academy of Sciences, PANGAEA, https://doi.org/10.1594/PANGAEA.780381
Poulton, Simon W; Bottrell, S H; Underwood, Charlie J (1998): Porewater sulphur geochemistry and fossil preservation during phosphate diagenesis in a Lower Cretaceous shelf mudstone. Sedimentology, 45(5), 875-887, https://doi.org/10.1046/j.1365-3091.1998.00181.x
Raven, Morgan Reed; Fike, David A; Bradley, Alexander S; Gomes, Maya L; Owens, Jeremy D; Webb, Samuel A (2019): Paired organic matter and pyrite δ34S records reveal mechanisms of carbon, sulfur, and iron cycle disruption during Ocean Anoxic Event 2. Earth and Planetary Science Letters, 512, 27-38, https://doi.org/10.1016/j.epsl.2019.01.048
Raven, Morgan Reed; Sessions, Alex L; Fischer, Woodward W; Adkins, Jess F (2016): Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur. Geochimica et Cosmochimica Acta, 186, 120-134, https://doi.org/10.1016/j.gca.2016.04.037
Sælen, G; Raiswell, Robert; Talbot, M R; Skei, J M; Bottrell, S H (1993): Heavy sedimentary sulfur isotopes as indicators of super-anoxic bottom-water conditions. Geology, 21(12), 1091, https://doi.org/10.1130/0091-7613(1993)021%3C1091:HSSIAI%3E2.3.CO;2
Schaefer, Bettina; Grice, Kliti; Coolen, Marco J L; Summons, Roger E; Cui, Xingqian; Bauersachs, Thorsten; Schwark, Lorenz; Böttcher, Michael Ernst; Bralower, Timothy J; Lyons, Shelby L; Freeman, Katherine H; Cockell, Charles S; Gulick, Sean P S; Morgan, J V; Whalen, Michael T; Lowery, Christopher M; Vajda, Vivi (2020): Microbial life in the nascent Chicxulub crater. Geology, 48(4), 328-332, https://doi.org/10.1130/G46799.1
Scheiderich, Kathleen; Zerkle, Aubrey L; Helz, George R; Farquhar, James; Walker, Richard J (2010): Molybdenum isotope, multiple sulfur isotope, and redox-sensitive element behavior in early Pleistocene Mediterranean sapropels. Chemical Geology, 279(3-4), 134-144, https://doi.org/10.1016/j.chemgeo.2010.10.015
Schmitz, Birger; Andersson, Per S; Dahl, Jeremy (1988): Iridium, sulfur isotopes and rare earth elements in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark. Geochimica et Cosmochimica Acta, 52(1), 229-236, https://doi.org/10.1016/0016-7037(88)90072-5
Shawar, Lubna; Halevy, Itay; Said-Ahmad, Ward; Feinstein, S; Boyko, Valeria; Kamyshny, Alexey; Amrani, Alon (2018): Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments. Geochimica et Cosmochimica Acta, 241, 219-239, https://doi.org/10.1016/j.gca.2018.08.048
Shawar, Lubna; Said-Ahmad, Ward; Ellis, Geoffrey S; Amrani, Alon (2020): Sulfur isotope composition of individual compounds in immature organic-rich rocks and possible geochemical implications. Geochimica et Cosmochimica Acta, 274, 20-44, https://doi.org/10.1016/j.gca.2020.01.034
Siedenberg, Katharina; Strauss, Harald; Podlaha, Olaf; van den Boorn, Sander H J M (2018): Multiple sulfur isotopes (δ34S, Δ33S) of organic sulfur and pyrite from Late Cretaceous to Early Eocene oil shales in Jordan. Organic Geochemistry, 125, 29-40, https://doi.org/10.1016/j.orggeochem.2018.08.002
Sternbeck, John; Sohlenius, Gustav (1997): Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea. Chemical Geology, 135(1-2), 55-73, https://doi.org/10.1016/S0009-2541(96)00104-0
Strizhov, Valentin P; Kuznetsov, Alexey P; Gurina, N V (1990): (Table 2) Concentrations and isotopic compositions of pyrite and sulfate sulfur in argillaceous sediments outside the gas hydrate seep zone, Sea of Okhotsk [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.758912
Tagliavento, Mattia; Lauridsen, Bodil W; Stemmerik, Lars (2020): Episodic dysoxia during Late Cretaceous cyclic chalk-marl deposition – Evidence from framboidal pyrite distribution in the upper Maastrichtian Rørdal Mb., Danish Basin. Cretaceous Research, 106, 104223, https://doi.org/10.1016/j.cretres.2019.104223
Turchyn, Alexandra V; Antler, Gilad; Byrne, David; Miller, Madeline D; Hodell, David A (2016): Microbial sulfur metabolism evidenced from pore fluid isotope geochemistry at Site U1385. Global and Planetary Change, 141, 82-90, https://doi.org/10.1016/j.gloplacha.2016.03.004
Wang, Bin; Lei, Huaiyan; Huang, F (2022): Impacts of sulfate-driven anaerobic oxidation of methane on the morphology, sulfur isotope, and trace element content of authigenic pyrite in marine sediments of the northern South China Sea. Marine and Petroleum Geology, 139, 105578, https://doi.org/10.1016/j.marpetgeo.2022.105578
Wang, Jiasheng; Chen, Qi; Wei, Qing; Wang, Xiaoqin; Li, Qing; Gao, Yuya (2008): AUTHIGENIC PYRITES AND THEIR STABLE SULFUR ISOTOPES IN SEDIMENTS FROM IODP 311 ON CASCADIA MARGIN, NORTHEASTERN PACIFIC. University Of British Columbia, https://doi.org/10.14288/1.0041075
Werne, Josef P; Lyons, Timothy W; Hollander, David J; Formolo, Michael J; Sinninghe Damsté, Jaap S (2003): Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. Chemical Geology, 195(1-4), 159-179, https://doi.org/10.1016/S0009-2541(02)00393-5
Whittaker, Steven G; Kyser, T Kurtis (1990): Effects of sources and diagenesis on the isotopic and chemical composition of carbon and sulfur in Cretaceous shales. Geochimica et Cosmochimica Acta, 54(10), 2799-2810, https://doi.org/10.1016/0016-7037(90)90014-C
Wijsman, Jeroen W M; Middelburg, Jack J; Herman, Peter M J; Böttcher, Michael Ernst; Heip, Carlo H R (2001): Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Marine Chemistry, 74(4), 261-278, https://doi.org/10.1016/S0304-4203(01)00019-6
Wilkin, Richard T; Arthur, Michael A (2001): Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the o2-h2s redox transition. Geochimica et Cosmochimica Acta, 65(9), 1399-1416, https://doi.org/10.1016/S0016-7037(01)00552-X
Zaback, Doreen A; Pratt, Lisa M (1992): Isotopic composition and speciation of sulfur in the Miocene Monterey Formation: Reevaluation of sulfur reactions during early diagenesis in marine environments. Geochimica et Cosmochimica Acta, 56(2), 763-774, https://doi.org/10.1016/0016-7037(92)90096-2
Zindorf, Mark; März, Christian; Wagner, Thomas; Gulick, Sean P S; Strauss, Harald; Benowitz, Jeff; Jaeger, John; Schnetger, Bernhard; Childress, Laurel; LeVay, Leah J; van der Land, Cees; La Rosa, Michelle (2019): Deep Sulfate-Methane-Transition and sediment diagenesis in the Gulf of Alaska (IODP Site U1417). Marine Geology, 417, 105986, https://doi.org/10.1016/j.margeo.2019.105986
Coverage:
Median Latitude: 31.576831 * Median Longitude: -9.435290 * South-bound Latitude: -46.579667 * West-bound Longitude: -178.166467 * North-bound Latitude: 87.890000 * East-bound Longitude: 174.314100
Date/Time Start: 1974-07-18T00:00:00 * Date/Time End: 2016-07-04T00:00:00
Minimum Elevation: -4965.0 m * Maximum Elevation: -19.8 m
Event(s):
Parameter(s):
# | Name | Short Name | Unit | Principal Investigator | Method/Device | Comment |
---|---|---|---|---|---|---|
1 | Event label | Event | Spruzen, Charlotte | |||
2 | Latitude of event | Latitude | Spruzen, Charlotte | |||
3 | Longitude of event | Longitude | Spruzen, Charlotte | |||
4 | Site | Site | Spruzen, Charlotte | |||
5 | Provenance/source | Source | Spruzen, Charlotte | |||
6 | Uniform resource locator/link to reference | URL ref | Spruzen, Charlotte | |||
7 | δ34S, pyrite | δ34S Py | ‰ CDT | Spruzen, Charlotte | From literature | Only collected if pyrite specifically has been measured through chromium reduction, manual separation, or secondary ion mass spectrometry; no other sulfide minerals included. |
8 | Age | Age | Ma | Spruzen, Charlotte | From literature | Either taken directly from a publication dataset, or taken from the age-depth profile of the sediment core. |
9 | Sample type | Samp type | Spruzen, Charlotte | From literature | Outcrop or unlithified sediment core. | |
10 | Distance to shore | Dist shore | m | Spruzen, Charlotte | From literature | istance of sample location from a major continental landmass, measured on a geospatial map. |
11 | Water depth description | Water depth descr | Spruzen, Charlotte | From literature | Water depth of deposition, assigned based on plotting on a geospatial map (sediment cores) or distinct sedimentological criteria (outcrop). | |
12 | ELEVATION | Elevation | m a.s.l. | Spruzen, Charlotte | From literature | Geocode |
13 | DEPTH, sediment/rock | Depth sed | m | Spruzen, Charlotte | From literature | Geocode |
14 | Sedimentation rate | SR | m/Ma | Spruzen, Charlotte | From literature | Either taken directly from a publication dataset, or taken from the age-depth profile of the sediment core. |
15 | Methane | CH4 | Spruzen, Charlotte | From literature | High-methane sites assigned based on the presence of an SMTZ, and/or a methane concentration over 1000ppm in sedimentary pore fluids. | |
16 | Main Lithology | Main lith | Spruzen, Charlotte | From literature | ||
17 | Calcium carbonate | CaCO3 | % | Spruzen, Charlotte | From literature | |
18 | Carbon, organic, total | TOC | % | Spruzen, Charlotte | From literature | |
19 | Analytical method | Method | Spruzen, Charlotte | From literature | H = hand-picked pyrite; C = CRS (two-step reduction process where AVS first removed); S = Secondary Ion Mass Spectrometry (fine-scale), T = Total Reduced Inorganic Sulfur (i.e. AVS + CRS, one-step reduction process), M = microdrilled (fine-scale but not SIMS), O = other. |
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
36249 data points
Download Data
View dataset as HTML (shows only first 2000 rows)