Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Lebrun, Anaïs; Miller, Cale A; Meynadier, Marc; Comeau, Steeve; Urrutti, Pierre; Alliouane, Samir; Schlegel, Robert; Gattuso, Jean-Pierre; Gazeau, Frédéric (2024): Multifactorial effects of warming, low irradiance, and low salinity on Arctic kelps [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.971349

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
The Arctic is projected to warm by 2 to 5°C by the end of the century. Warming causes melting of glaciers, shrinking of the areas covered by sea ice, and increased terrestrial runoff from snowfields and permafrost thawing. Warming, decreasing coastal underwater irradiance, and lower salinity are potentially threatening polar marine organisms, including kelps, that are key species of hard-bottom shallow communities. The present study investigates the physiological responses of four kelp species (Alaria esculenta, Laminaria digitata, Saccharina latissima, and Hedophyllum nigripes) to these environmental changes through a perturbation experiment in ex situ mesocosms. Kelps were exposed for six weeks to four experimental treatments: an unmanipulated control, a warming condition under the CO2 emission scenario SSP5-8.5, and two multifactorial conditions combining warming, low salinity, and low irradiance reproducing the future coastal Arctic exposed to terrestrial runoff under two CO2 emission scenarios (SSP2-4.5 and SSP5-8.5). The physiological effects on A. esculenta, L. digitata and S. latissima were investigated and gene expression patterns of S. latissima and H. nigripes were analyzed. Across all species and experimental treatments, growth rates were similar, underlying the acclimation potential of these species to future Arctic conditions. Specimens of A. esculenta increased their chlorophyll a content when exposed to low irradiance conditions, suggesting that they may be resilient to an increase in glacier and river runoff with the potential to become more dominant at greater depths. S. latissima showed a lower carbon:nitrogen (C:N) ratio under the SSP5-8.5 multifactorial conditions treatment, suggesting tolerance to coastal erosion and permafrost thawing. In contrast, L. digitata showed no response to the conditions tested on any of the investigated physiological parameters. The gene expression patterns of H. nigripes and S. latissima underscores their ability and underline temperature as a key influencing factor. Based on these results, it is expected that kelp communities will undergo changes in species composition that will vary at local scale as a function of the changes in environmental drivers.
Keyword(s):
Arctic; Climate change; kelps; mesocosm experiment
Related to:
Project(s):
Funding:
Horizon 2020 (H2020), grant/award no. 869154: Arctic Biodiversity & Livelihoods (FACE-IT)
Coverage:
Date/Time Start: 2021-06-30T22:01:00 * Date/Time End: 2021-08-29T13:01:00
Event(s):
Ny_Ålesund_Mesocosm_2021 * Date/Time Start: 2021-06-30T22:01:00 * Date/Time End: 2021-08-29T13:01:00 * Location: Ny-Ålesund, Spitsbergen * Method/Device: Mesocosm experiment (MESO)
Size:
6 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: