Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Podbielski, Imke Anna; Schmittmann, Lara; Sanders, Trystan; Melzner, Frank (2023): Salinity tolerance study details with means and variances of parameters compiled in a systematic review and meta-analysis [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.958463, In: Podbielski, IA et al. (2023): Systematic review and meta-analysis investigating osmolyte concentrations of marine osmoconformers under low salinity stress [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.958457

Always quote citation above when using data! You can download the citation in several formats below.

Published: 2023-06-09DOI registered: 2023-07-08

RIS CitationBibTeX Citation Share

Abstract:
All studies included in the meta-analysis are listed with study details such as experimental design, species studied, number of replicates, salinity levels and mean values and variances of the studied parameters. Data are only reported if full data (replication, mean, variation) were given.
Keyword(s):
cellular volume regulation; marine invertebrates; meta-analysis; osmoconformer; osmolytes; osmoregulation; Osmotic stress; salinity tolerance; systematic review
Supplement to:
Podbielski, Imke Anna; Schmittmann, Lara; Sanders, Trystan; Melzner, Frank (2022): Acclimation of marine invertebrate osmolyte systems to low salinity: A systematic review & meta-analysis. Frontiers in Marine Science, 9, 934378, https://doi.org/10.3389/fmars.2022.934378
Source:
Allen, J A; Garrett, M R (1972): Studies on taurine in the euryhaline bivalve Mya arenaria. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 41(2), 307-317, https://doi.org/10.1016/0300-9629(72)90062-X
Amende, Lynn M; Pierce Jr, Sidney K (1980): Cellular volume regulation in salinity stressed molluscs: The response of Noetia ponderosa (Arcidae) red blood cells to osmotic variation. Journal of Comparative Physiology B-Biochemical Systemic and Environmentalphysiology, 138(4), 283-289, https://doi.org/10.1007/BF00691562
Austin, Heather (2007): Effect of hypo-osmotic stress on pedal disk diameter, volume regulation and concentration of Mg(2+) in the sea anemone Metridium senile. Oregon Institute of Marine Biology, University of Oregon, 20 pp., https://hdl.handle.net/1794/5563
Baginski, Richard M; Pierce Jr, Sidney K (1975): Anaerobiosis: A Possible Source of Osmotic Solute for High-salinity Acclimation in Marine Molluscs. Journal of Experimental Biology, 62(3), 589-598, https://doi.org/10.1242/jeb.62.3.589
Benson-Rodenbough, Barbara; Ellington, W Ross (1982): Responses of the euryhaline sea anemone bunodosoma cavernata (bosc) (anthozoa, actinaria, actiniidae) to osmotic stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 72(4), 731-735, https://doi.org/10.1016/0300-9629(82)90157-8
Berger, V Ya; Khlebovich, V V; Kovaleva, N M; Natochin, Yu V (1978): The changes of ionic composition and cell volume during adaptation of molluscs (Littorina) to lowered salinity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 60(4), 447-452, https://doi.org/10.1016/0300-9629(78)90015-4
Bishop, Charles D; Watts, Stephen A; Lee, Kara J (1994): A comparison of osmolality and specific ion concentrations in the fluid compartments of the regular sea urchin Lytechinus variegatus Lamarck (Echinodermata: Echinoidea) in varying salinities. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 108(4), 497-502, https://doi.org/10.1016/0300-9629(94)90333-6
Bryan, G W (1963): The accumulation of radioactive caesium by marine invertebrates. Journal of the Marine Biological Association of the United Kingdom, 43(2), 519-539, https://doi.org/10.1017/S0025315400000497
Coimbra Rola, Regina; Marques Souza, Marta; Zomer Sandrini, Juliana (2017): Hypoosmotic stress in the mussel Perna perna (Linnaeus, 1758): Is ecological history a determinant for organismal responses? Estuarine, Coastal and Shelf Science, 189, 216-223, https://doi.org/10.1016/j.ecss.2017.03.020
Costa, Charles J; Pierce Jr, Sidney K (1983): Volume regulation in the red coelomocytes of Glycera dibranchiata: An interaction of amino acid and K+ effluxes. Journal of Comparative Physiology B-Biochemical Systemic and Environmentalphysiology, 151(2), 133-144, https://doi.org/10.1007/BF00689911
Costa, Charles J; Pierce Jr, Sidney K; Warren, Mary Kim (1980): The intracellular mechanism of salinity tolerance in polychaetes: Volume regulation by isolated Glycera dibranchiata red coelomocytes. Biological Bulletin, 159(3), 626-638, https://doi.org/10.2307/1540828
de Vooys, C G N (1991): Anaerobic metabolism in sublittoral living Mytilus galloprovincialis in the mediterranean—IV. Role of amino acids in adaptation to low salinities during anaerobiosis and aerobiosis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 100(2), 423-431, https://doi.org/10.1016/0300-9629(91)90494-W
Deaton, Lewis E (1981): Ion Regulation in Freshwater and Brackish Water Bivalve Mollusks. Physiological and Biochemical Zoology, 54(1), 109-121, https://doi.org/10.1086/physzool.54.1.30155809
Deaton, Lewis E (1992): Osmoregulation and epithelial permeability in two euryhaline bivalve molluscs: Mya arenaria and Geukensia demissa. Journal of Experimental Marine Biology and Ecology, 158(2), 167-177, https://doi.org/10.1016/0022-0981(92)90224-X
Deaton, Lewis E; Derby, Jennifer GS; Subhedar, Nishikant; Greenberg, Michael J (1989): Osmoregulation and salinity tolerance in two species of bivalve mollusc: Limnoperna fortunei and Mytilopsis leucophaeta. Journal of Experimental Marine Biology and Ecology, 133(1-2), 67-79, https://doi.org/10.1016/0022-0981(89)90158-5
Deaton, Lewis E; Hoffmann, Richard J (1988): Hypoosmotic volume regulation in the sea anemone Metridium senile. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 91(1), 187-191, https://doi.org/10.1016/0742-8413(88)90185-5
Emerson, D (1969): Influence of salinity of ammonia excretion rates and tissue constituents of euryhaline invertebrates. Comparative Biochemistry and Physiology, 29(3), 1115-1133, https://doi.org/10.1016/0010-406X(69)91017-2
Gainey Jr., L F (1978): The Response of the Corbiculidae (Mollusca: Bivalvia) to Osmotic Stress: The Cellular Response. Physiological and Biochemical Zoology, 51(1), 79-91, https://doi.org/10.1086/physzool.51.1.30158667
Gainey Jr., L F; Greenberg, Michael J (1977): Physiological basis of the species abundance-salinity relationship in molluscs: A speculation. Marine Biology, 40(1), 41-49, https://doi.org/10.1007/BF00390626
Henry, Raymond P; Perry, Harriet M; Trigg, Christine B; Handley, Holley L; Krarup, Annette (1990): Physiology of Two Species of Deep-Water Crabs, Chaceon Fenneri and C. Quinquedens: Gill Morphology, and Hemolymph Ionic and Nitrogen Concentrations. Journal of Crustacean Biology, 10(3), 375-381, https://doi.org/10.2307/1548327
Hildreth, Jane E; Stickle, W B (1980): The effects of temperature and salinity on the osmotic composition of the southern oyster drill, Thais haemastoma. Biological Bulletin, 159(1), 148-161, https://doi.org/10.2307/1541015
Hiong, K C; Peh, W Y X; Loong, A M; Wong, W P; Chew, S F; Ip, Yuen K (2004): Exposure to air, but not seawater, increases the glutamine content and the glutamine synthetase activity in the marsh clam Polymesoda expansa. Journal of Experimental Biology, 207(26), 4605-4614, https://doi.org/10.1242/jeb.01334
Kapper, MA; Stickle, W B; Blakeney, E (1985): Volume regulation and nitrogen metabolism in the muricid gastropod Thais haemastoma. Biological Bulletin, 169(2), 458-475, https://doi.org/10.2307/1541495
Knight, Patricia-Ann; Loomis, Stephen H; Fell, Paul E (1992): The use of free amino acids for osmotic compensation by the euryhaline sponge Microciona prolifera (Ellis & Sollander). Journal of Experimental Marine Biology and Ecology, 163(1), 111-123, https://doi.org/10.1016/0022-0981(92)90150-9
Kube, Sandra; Sokołowski, A; Jansen, Jeroen M; Schiedek, Doris (2007): Seasonal variability of free amino acids in two marine bivalves, Macoma balthica and Mytilus spp., in relation to environmental and physiological factors. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(4), 1015-1027, https://doi.org/10.1016/j.cbpa.2007.03.012
Lee, Won-Chung; Chen, Jiann-Chu (2003): Hemolymph ammonia, urea and uric acid levels and nitrogenous excretion of Marsupenaeus japonicus at different salinity levels. Journal of Experimental Marine Biology and Ecology, 288(1), 39-49, https://doi.org/10.1016/S0022-0981(02)00597-X
Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han (2016): Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges. Frontiers in Physiology, 7, 368, https://doi.org/10.3389/fphys.2016.00368
Livingstone, D R; Widdows, J; Fieth, P (1979): Aspects of nitrogen metabolism of the common mussel Mytilus edulis: Adaptation to abrupt and fluctuating changes in salinity. Marine Biology, 53(1), 41-55, https://doi.org/10.1007/BF00386528
Lucu, Čedomil; Devescovi, Massimo (1999): Osmoregulation and branchial Na+,K+-ATPase in the lobster Homarus gammarus acclimated to dilute seawater. Journal of Experimental Marine Biology and Ecology, 234(2), 291-304, https://doi.org/10.1016/S0022-0981(98)00152-X
Lucu, Čedomil; Devescovi, Massimo; Skaramuca, Boško; Kožul, Valter (2000): Gill Na,K-ATPase in the spiny lobster Palinurus elephas and other marine osmoconformers. Journal of Experimental Marine Biology and Ecology, 246(2), 163-178, https://doi.org/10.1016/S0022-0981(99)00179-3
Lynch, Maurice P; Wood, Langley (1966): Effects of environmental salinity of free amino acids of Crassostrea virginica gmelin. Comparative Biochemistry and Physiology, 19(4), 783-790, https://doi.org/10.1016/0010-406X(66)90434-8
Natochin, Yu V; Berger, V Ya; Khlebovich, V V; Lavrova, E A; Michailova, O Yu (1979): The participation of electrolytes in adaptation mechanisms of intertidal molluscs' cells to altered salinity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 63(1), 115-119, https://doi.org/10.1016/0300-9629(79)90636-4
Neufeld, D S; Wright, S H (1996): Response of Cell Volume in Mytilus Gill to Acute Salinity Change. Journal of Experimental Biology, 199(2), 473-484, https://doi.org/10.1242/jeb.199.2.473
Neufeld, D S; Wright, S H (1996): Salinity Change and Cell Volume: the Response of Tissues from the Estuarine Mussel Geukensia Demissa. Journal of Experimental Biology, 199(7), 1619-1630, https://doi.org/10.1242/jeb.199.7.1619
Neufeld, D S; Wright, S H (1998): Effect of Cyclical Salinity Changes on Cell Volume and Function in Geukensia Demissa Gills. Journal of Experimental Biology, 201(9), 1421-1431, https://doi.org/10.1242/jeb.201.9.1421
Oglesby, Larry C (1968): Some osmotic responses of the sipunculid worm Themiste dyscritum. Comparative Biochemistry and Physiology, 26(1), 155-177, https://doi.org/10.1016/0010-406X(68)90323-X
Paynter, K T; Pierce Jr, Sidney K; Burreson, E M (1995): Levels of intracellular free amino acids used for salinity tolerance by oysters (Crassostrea virginica) are altered by protozoan (Perkinsus marinus) parasitism. Marine Biology, 122(1), 67-72, https://doi.org/10.1007/BF00349278
Pierce Jr, Sidney K (1970): The water balance of Modiolus (Mollusca: Bivalvia: Mytilidae): Osmotic concentrations in changing salinities. Comparative Biochemistry and Physiology, 36(3), 521-533, https://doi.org/10.1016/0010-406X(70)91028-5
Pierce Jr, Sidney K (1971): A source of solute for volume regulation in marine mussels. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 38(3), 619-635, https://doi.org/10.1016/0300-9629(71)90129-0
Pierce Jr, Sidney K; Edwards, Samuel C; Mazzocchi, Paul H; Klingler, Lori J; Warren, Mary Kim (1984): Proline betaine: A unique osmolyte in an extremely euryhaline osmoconformer. Biological Bulletin, 167(2), 495-500, https://doi.org/10.2307/1541294
Pierce Jr, Sidney K; Rowland-Faux, L M; O'Brien, S M (1992): Different salinity tolerance mechanisms in Atlantic and Chesapeake Bay conspecific oysters: glycine betaine and amino acid pool variations. Marine Biology, 113(1), 107-115, https://doi.org/10.1007/BF00367644
Pierce Jr, Sidney K; Warren, Mary Kim; West, Hillary H (1983): Non-Amino Acid Mediated Volume Regulation in an Extreme Osmoconformer. Physiological and Biochemical Zoology, 56(3), 445-454, https://doi.org/10.1086/physzool.56.3.30152610
Podbielski, Imke Anna; Bock, Christian; Lenz, Mark; Melzner, Frank (2016): Using the critical salinity (S crit) concept to predict invasion potential of the anemone Diadumene lineata in the Baltic Sea. Marine Biology, 163(11), https://doi.org/10.1007/s00227-016-2989-5
Potts, W T W (1958): The Inorganic and Amino Acid Composition of Some Lamellibranch Muscles. Journal of Experimental Biology, 35(4), 749-764, https://doi.org/10.1242/jeb.35.4.749
Ran, Zhaoshou; Li, Shuang; Zhang, Runtao; Xu, Jilin; Liao, Kai; Yu, Xuejun; Zhong, Yingying; Ye, Mengwei; Yu, Shanshan; Ran, Yun; Huang, Wei; Yan, Xiaojun (2017): Proximate, amino acid and lipid compositions in Sinonovacula constricta (Lamarck) reared at different salinities. Journal of the Science of Food and Agriculture, 97(13), 4476-4483, https://doi.org/10.1002/jsfa.8311
Rowland, Laura Marie; Pierce Jr, Sidney K (1985): The Utilization and Fate of Quaternary Ammonium Compounds during Low Salinity Adaptation in Elysia chlorotica. Physiological and Biochemical Zoology, 58(1), 149-157, https://doi.org/10.1086/physzool.58.1.30161228
Sanders, Trystan (2018): Bioenergetics of calcification in mytilid bivalves along the Baltic Sea salinity gradient [dissertation]. Christian-Albrechts-Universität zu Kiel, 225 pp.
Schiedek, Doris (1997): Marenzelleria cf. viridis (Polychaeta: Spionidae) – ecophysiological adaptations to a life in the coastal waters of the Baltic Sea. Aquatic Ecology, 31(2), 199-210, https://doi.org/10.1023/A:1009907606161
Schiedek, Doris (1998): Ecophysiological capability of Marenzelleria populations inhabiting North Sea estuaries: an overview. Helgoland Marine Research, 52(3-4), 373-382, https://doi.org/10.1007/BF02908911
Schmittmann, Lara (2017): Local adaptation of the common sea star Asterias rubens to different salinities [thesis]. Christian-Albrechts-Universität zu Kiel, 930pp.
Shumway, S E (1977): Effect of salinity fluctuation on the osmotic pressure and Na+, Ca2+ and Mg2+ ion concentrations in the hemolymph of bivalve molluscs. Marine Biology, 41(2), 153-177, https://doi.org/10.1007/BF00394023
Silva, Arnold Lawrence (1992): Effect of salinity on integumental transport in marine bivalves [dissertation]. University of Arizona, 151 pp.
Stickle, W B; Kapper, MA; Blakeney, E; Bayne, B L (1985): Effects of salinity on the nitrogen metabolism of the muricid gastropod, Thais (Nucella) lapillus (L.) (Mollusca: Prosobranchia). Journal of Experimental Marine Biology and Ecology, 91(1-2), 1-16, https://doi.org/10.1016/0022-0981(85)90217-5
Stucchi-Zucchi, Arlete; Salomão, Luiz C (1998): The ionic basis of membrane potentials and adaptation to hyposmotic stress in Perna perna, an osmoconforming mollusc. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 121(2), 143-148, https://doi.org/10.1016/S1095-6433(98)10115-0
Willmer, P G (1978): Volume Regulation and Solute Balance in the Nervous Tissue of An Osmoconforming Bivalve (Mytilus edulis). Journal of Experimental Biology, 77(1), 157-179, https://doi.org/10.1242/jeb.77.1.157
Witteveen, J; Verhoef, H A; Letschert, J P W (1987): Osmotic and ionic regulation in marine littoral Collembola. Journal of Insect Physiology, 33(1), 59-66, https://doi.org/10.1016/0022-1910(87)90105-3
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Record numberRNPodbielski, Imke Anna
2Reference/sourceReferencePodbielski, Imke Anna
3EcosystemEcosystemPodbielski, Imke Anna
4Experiment durationExp durationdaysPodbielski, Imke Anna
5Salinity changedelta SPodbielski, Imke Anna
6Salinity, minimumSal minPodbielski, Imke Anna
7Salinity, maximumSal maxPodbielski, Imke Anna
8ConditionCondPodbielski, Imke Anna
9Water descriptionWater descrPodbielski, Imke Anna
10LocationLocationPodbielski, Imke Anna
11ContinentContPodbielski, Imke Anna
12Zone, biogeographicBiogeograph zonePodbielski, Imke Anna
13Taxon/taxaTaxaPodbielski, Imke Anna
14ClassClassPodbielski, Imke Anna
15SpeciesSpeciesPodbielski, Imke Anna
16Taxon/taxa, unique identificationTaxa UIDPodbielski, Imke Anna
17Taxon/taxa, unique identification (URI)Taxa UID (URI)Podbielski, Imke Anna
18Taxon/taxa, unique identification (Semantic URI)Taxa UID (Semantic URI)Podbielski, Imke Anna
19Species, common nameSpecies commonPodbielski, Imke Anna
20OsmoregulationOsmoregulationPodbielski, Imke Anna
21Sample typeSamp typePodbielski, Imke Anna
22MediumMediumPodbielski, Imke Anna
23Number of speciesSpec No#Podbielski, Imke Anna
24Treatment levelsTreatment levels#Podbielski, Imke Annaminimum
25Treatment levelsTreatment levels#Podbielski, Imke Annamaximum
26ReplicatesRepl#Podbielski, Imke Annalow salinity
27ReplicatesRepl#Podbielski, Imke Annahigh salinity
28Experiment/study setupSetupPodbielski, Imke Anna
29VariableVariablePodbielski, Imke Annacrossed 1
30VariableVariablePodbielski, Imke Annacrossed 2
31ParameterParameterPodbielski, Imke Anna
32Mean, statisticalMeanPodbielski, Imke AnnaCalculatedlow salinity
33VarianceVarPodbielski, Imke AnnaCalculatedlow salinity
34Mean, statisticalMeanPodbielski, Imke AnnaCalculatedhigh salinity
35VarianceVarPodbielski, Imke AnnaCalculatedhigh salinity
36UnitUnitPodbielski, Imke Anna
37Method commentMethod commPodbielski, Imke Annavariance type
38CommentCommentPodbielski, Imke Annaextracellular space included?
39Incubation typeInc typePodbielski, Imke Anna
40Comment 2 (continued)Comm 2Podbielski, Imke Anna
Status:
Curation Level: Enhanced curation (CurationLevelC) * Processing Level: PANGAEA data processing level 4 (ProcLevel4)
Size:
21275 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)