Brown, Kristen T; Mello-Athayde, Matheus A; Sampayo, Eugenia M; Chai, Aaron; Dove, Sophie; Barott, Katie L (2022): Seawater carbonate chemistry and endosymbiont density, photosynthesis and net calcification rates of reef-building coral Pocillopora damicornis [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.953058
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.
Keyword(s):
Animalia; Benthic animals; Benthos; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or < 1 m**2); Growth/Morphology; Laboratory experiment; Other; Pocillopora damicornis; Primary production/Photosynthesis; Respiration; Single species; South Pacific; Tropical
Supplement to:
Brown, Kristen T; Mello-Athayde, Matheus A; Sampayo, Eugenia M; Chai, Aaron; Dove, Sophie; Barott, Katie L (2022): Environmental memory gained from exposure to extreme pCO2 variability promotes coral cellular acid–base homeostasis. Proceedings of the Royal Society B-Biological Sciences, 289(1982), 20220941, https://doi.org/10.1098/rspb.2022.0941
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James (2021): seacarb: seawater carbonate chemistry with R. R package version 3.2.16. https://cran.r-project.org/web/packages/seacarb/index.html
Project(s):
Coverage:
Latitude: -23.270000 * Longitude: 151.550000
Date/Time Start: 2021-01-08T00:00:00 * Date/Time End: 2021-03-18T00:00:00
Event(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-12-22.
Parameter(s):
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
328 data points