Jutila, Arttu; Hendricks, Stefan; Birnbaum, Gerit; von Albedyll, Luisa; Ricker, Robert; Helm, Veit; Hutter, Nils; Haas, Christian (2023): Geolocated sea-ice or snow surface elevation point cloud segments from helicopter-borne laser scanner during the MOSAiC expedition flight 20200108_03, version 1 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.950911, In: Jutila, A et al. (2023): Geolocated sea-ice or snow surface elevation point cloud segments from helicopter-borne laser scanner during the MOSAiC expedition, version 1 [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.950509
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
This data set provides high-resolution geolocated point clouds of sea-ice or snow surface elevation for mapping temporal and spatial evolution of sea-ice conditions such as freeboard, roughness, or the size and spatial distributions of surface features. The surface elevation data are referenced to the DTU21 mean sea surface height and are not corrected for sea-ice drift during acquisition. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The point cloud data are stored in 5-min along-track segments in a custom binary format, for which we provide a python-based parsing tool in awi-als-toolbox (https://github.com/awi-als-toolbox/awi-als-toolbox), together with corresponding metadata json and line-shot quicklook png files. The point cloud data includes as variables: surface elevation (referenced to DTU mean sea surface height), surface reflectance, and echo width. The degraded GPS altitude data >85°N may cause undulations in the along-track surface elevations, which are not corrected for in this data product.
Keyword(s):
Related to:
Hutter, Nils; Hendricks, Stefan; Jutila, Arttu; Birnbaum, Gerit; von Albedyll, Luisa; Ricker, Robert; Haas, Christian (2023): Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.950339
Hutter, Nils; Hendricks, Stefan; Jutila, Arttu; Birnbaum, Gerit; von Albedyll, Luisa; Ricker, Robert; Haas, Christian (2023): Merged grids of sea-ice or snow freeboard from helicopter-borne laser scanner during the MOSAiC expedition, version 1 [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.950896
Hutter, Nils; Hendricks, Stefan; Jutila, Arttu; Ricker, Robert; von Albedyll, Luisa; Birnbaum, Gerit; Haas, Christian (2023): Digital elevation models of the sea-ice surface from airborne laser scanning during MOSAiC. Scientific Data, 10(1), 729, https://doi.org/10.1038/s41597-023-02565-6
Further details:
Hendricks, Stefan; Hutter, Nils; Jutila, Arttu (2019): AWI ALS toolbox: python toolbox to parse and process airborne laserscanner (ALS) binary data files from the Alfred Wegener Institute (AWI). GitHub, https://github.com/awi-als-toolbox/awi-als-toolbox
Nicolaus, Marcel; Perovich, Donald K; Spreen, Gunnar; Granskog, Mats A; von Albedyll, Luisa; Angelopoulos, Michael; Anhaus, Philipp; Arndt, Stefanie; Belter, Hans Jakob; Bessonov, Vladimir; Birnbaum, Gerit; Brauchle, Jörg; Calmer, Radiance; Cardellach, Estel; Cheng, Bin; Clemens-Sewall, David; Dadic, Ruzica; Damm, Ellen; de Boer, Gijs; Demir, Oguz; Dethloff, Klaus; Divine, Dmitry V; Fong, Allison A; Fons, Steven W; Frey, Markus M; Fuchs, Niels; Gabarró, Carolina; Gerland, Sebastian; Goessling, Helge; Gradinger, Rolf; Haapala, Jari; Haas, Christian; Hamilton, Jonathan; Hannula, Henna-Reetta; Hendricks, Stefan; Herber, Andreas; Heuzé, Céline; Hoppmann, Mario; Høyland, Knut Vilhelm; Huntemann, Marcus; Hutchings, Jennifer K; Hwang, Byongjun; Itkin, Polona; Jacobi, Hans-Werner; Jaggi, Matthias; Jutila, Arttu; Kaleschke, Lars; Katlein, Christian; Kolabutin, Nikolai; Krampe, Daniela; Kristensen, Steen Savstrup; Krumpen, Thomas; Kurtz, Nathan; Lampert, Astrid; Lange, Benjamin Allen; Lei, Ruibo; Light, Bonnie; Linhardt, Felix; Liston, Glen E; Loose, Brice; Macfarlane, Amy R; Mahmud, Mallik; Matero, Ilkka; Maus, Sönke; Morgenstern, Anne; Naderpour, Reza; Nandan, Vishnu; Niubom, Alexey; Oggier, Marc; Oppelt, Natascha; Pätzold, Falk; Perron, Christophe; Petrovsky, Tomasz; Pirazzini, Roberta; Polashenski, Chris; Rabe, Benjamin; Raphael, Ian; Regnery, Julia; Rex, Markus; Ricker, Robert; Riemann-Campe, Kathrin; Rinke, Annette; Rohde, Jan; Salganik, Evgenii; Scharien, Randall K; Schiller, Martin; Schneebeli, Martin; Semmling, Maximilian; Shimanchuk, Egor; Shupe, Matthew D; Smith, Madison M; Smolyanitsky, Vasily M; Sokolov, Vladimir; Stanton, T; Stroeve, Julienne C; Thielke, Linda; Timofeeva, Anna; Tonboe, Rasmus Tage; Tavri, Aikaterini; Tsamados, Michel; Wagner, David N; Watkins, Daniel; Webster, Melinda; Wendisch, Manfred (2022): Overview of the MOSAiC expedition: Snow and sea ice. 10(1), https://doi.org/10.1525/elementa.2021.000046
SENSOR: Metadata for light detection and ranging riegl-vq580 (riegl-vq580-s9997784) at current Version. Alfred Wegener Institut Helmholtz Centre for Polar and Marine Research, hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550
SENSOR: Metadata for light detection and ranging riegl-vq580 (riegl-vq580-s9999057) at current Version. Alfred Wegener Institut Helmholtz Centre for Polar and Marine Research, hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31
Project(s):
Funding:
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven (AWI), grant/award no. AFMOSAiC-1_00: Multidisciplinary drifting Observatory for the Study of Arctic Climate
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven (AWI), grant/award no. AWI_PS122_00: Multidisciplinary drifting Observatory for the Study of Arctic Climate / MOSAiC
Federal Ministry of Education and Research (BMBF), grant/award no. 03F0866A: MOSAiC 1 - IceSense: Fernerkundung der saisonalen Entwicklung klimarelevanter Meereis-Eigenschaften; Leitantrag; Vorhaben: Saisonale Veränderungen von Eisdicken und Schmelztümpeln
Coverage:
Median Latitude: 87.112099 * Median Longitude: 115.207976 * South-bound Latitude: 87.111839 * West-bound Longitude: 115.204621 * North-bound Latitude: 87.112358 * East-bound Longitude: 115.211330
Date/Time Start: 2020-01-08T09:43:44 * Date/Time End: 2020-01-08T10:23:39
Minimum Elevation: -4402.4 m * Maximum Elevation: -4402.3 m
Event(s):
PS122/2_19-52 (20200108_03) * Latitude Start: 87.111839 * Longitude Start: 115.211330 * Latitude End: 87.112358 * Longitude End: 115.204621 * Date/Time Start: 2020-01-08T09:43:00 * Date/Time End: 2020-01-08T10:23:00 * Elevation Start: -4402.4 m * Elevation End: -4402.3 m * O2A Registry URI: registry.o2a-data.de * Location: Arctic Ocean * Campaign: PS122/2 (MOSAiC20192020) * Basis: Polarstern * Method/Device: Helicopter (HELI) * Comment: L1 grid
Parameter(s):
# | Name | Short Name | Unit | Principal Investigator | Method/Device | Comment |
---|---|---|---|---|---|---|
1 | Flight number | Flight | Jutila, Arttu | |||
2 | DATE/TIME | Date/Time | Jutila, Arttu | Geocode – start | ||
3 | DATE/TIME | Date/Time | Jutila, Arttu | Geocode – end | ||
4 | LATITUDE | Latitude | Jutila, Arttu | Geocode – min | ||
5 | LATITUDE | Latitude | Jutila, Arttu | Geocode – max | ||
6 | LONGITUDE | Longitude | Jutila, Arttu | Geocode – min | ||
7 | LONGITUDE | Longitude | Jutila, Arttu | Geocode – max | ||
8 | Binary Object | Binary | Jutila, Arttu |
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Status:
Curation Level: Basic curation (CurationLevelB) * Processing Level: PANGAEA data processing level 3 (ProcLevel3)
Size:
16 data points