Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Haugk, Charlotte; Jongejans, Loeka Laura; Mangelsdorf, Kai; Fuchs, Matthias; Ogneva, Olga; Palmtag, Juri; Mollenhauer, Gesine; Mann, Paul James; Overduin, Pier Paul; Grosse, Guido; Sanders, Tina; Tuerena, Robyn E; Schirrmeister, Lutz; Wetterich, Sebastian; Kizyakov, Alexander; Strauss, Jens (2021): Organic matter characteristics using lipid biomarker analysis of a rapidly eroding permafrost cliff. PANGAEA, https://doi.org/10.1594/PANGAEA.935672

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Organic carbon (OC) stored in Arctic permafrost represents one of Earth's largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits are still poorly quantified. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 ka. We show that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt%).We found that the OM quality, which we define as the intrinsic potential to further transformation, decomposition, and mineralization, is also high as inferred by the lipid biomarker inventory. The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal kyr BP) and is overlaid by Last Glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched FAs relative to long chain (C ≥ 20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits, suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C / N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease of HPFA values downwards along the profile probably indicates a relatively stronger OM decomposition in the oldest (MIS 3) deposits of the cliff.
Keyword(s):
Biomarker; Carbon; erosion; n-alkane; n-fatty acids; Siberia; Yedoma
Funding:
Federal Ministry of Education and Research (BMBF), grant/award no. 03F0806A: WTZ Großbritannien: CACOON - Veränderung des arktischen Kohlenstoffkreislaufs im küstennahen Ozean
Natural Environment Research Council (NERC), grant/award no. NE/R012806/1: Changing Arctic Carbon cycle in the cOastal Ocean Near-shore
Coverage:
Median Latitude: 72.538462 * Median Longitude: 128.281175 * South-bound Latitude: 72.538120 * West-bound Longitude: 128.279830 * North-bound Latitude: 72.538770 * East-bound Longitude: 128.282670
Date/Time Start: 2018-07-14T00:00:00 * Date/Time End: 2018-07-18T00:00:00
Size:
4 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: