Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Vardić, Katarina; Clarke, Peter J; Whitehouse, Pippa L (2021): NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.935079

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
We created a 3D GNSS surface velocity field to estimate tectonic plate motion and test the effect of a set of 1D and 3D Glacial Isostatic Adjustment (GIA) models on tectonic plate motion estimates. The main motivation for creating a bespoke 3D velocity field is to include a larger number of GNSS sites in the GIA-affected areas of investigation, namely North America, Europe, and Antarctica. We created the GNSS surface velocity field using the daily network solutions submitted to the International GNSS Service (IGS) “repro2” data processing campaign, and other similarly processed GNSS solutions. We combined multiple epoch solutions into unique global epoch solutions of high stability. The GNSS solutions we used were processed with the latest available methods and models at the time: all the global and regional solutions adhere to IGS repro2 standards. Every network solution gives standard deviations of site position coordinates and the correlations between the network sites. We deconstrained and combined the global networks and aligned them to the most recent ITRF2014 reference frame on a daily level. Additionally, several regional network solutions were deconstrained and aligned to the unique global solutions. The process was performed using the Tanya reference frame combination software (Davies & Blewitt, 1997; doi:10.1029/2000JB900004) which we updated to facilitate changes in network combination method and ITRF realisation. This resulted in 57% reduction of the WRMS of the alignment post-fit residuals compared to the alignment to the previous ITRF2008 reference frame for an overlapping period. We estimated linear velocities from the time series of GNSS coordinates using the MIDAS trend estimator (Blewitt et al., 2016; doi:10.1002/2015JB012552). The sites selected through multiple steps of quality control constitute a final GNSS surface velocity field which we denote NCL20. This velocity field has horizontal uncertainties mostly within 0.5 mm/yr, and vertical uncertainties mostly within 1 mm/yr, which make it suitable for testing GIA models and estimating plate motion models.
Keyword(s):
Glacial Isostatic Adjustment (GIA) model; GNSS; horizontal GIA; plate motion model; Reference frame
Supplement to:
Vardić, Katarina; Clarke, Peter J; Whitehouse, Pippa L (2022): A GNSS velocity field for crustal deformation studies: The influence of glacial isostatic adjustment on plate motion models. Geophysical Journal International, 231(1), 426-458, https://doi.org/10.1093/gji/ggac047
Related to:
Kierulf, Halfdan Pascal; Steffen, Holger; Barletta, Valentina R; Lidberg, Martin; Johansson, Jan; Kristiansen, Oddgeir; Tarasov, Lev (2021): A GNSS velocity field for geophysical applications in Fennoscandia. Journal of Geodynamics, 146, 101845, https://doi.org/10.1016/j.jog.2021.101845
Murray, Mark H (2016): GAGE Processing GPS Plate Boundary Observatory Expanded Analysis Product: Final SINEX; Loosely-constrained Position Solution Produced by New Mexico Institute of Technology (Analysis Center). UNAVCO, Inc., https://doi.org/10.7283/P2BC7K
Rebischung, Paul; Altamimi, Zuheir; Ray, Jim; Garayt, Bruno (2016): The IGS contribution to ITRF2014. Journal of Geodesy, 90(7), 611-630, https://doi.org/10.1007/s00190-016-0897-6
Coverage:
Median Latitude: 28.681812 * Median Longitude: -39.359232 * South-bound Latitude: -87.415655 * West-bound Longitude: -176.617117 * North-bound Latitude: 82.494294 * East-bound Longitude: 179.196558
Minimum Elevation: 111.3 m * Maximum Elevation: 132.7 m
Event(s):
1LSU_GNSS * Latitude: 30.407425 * Longitude: -91.180262 * Method/Device: GNSS Receiver (GNSS)
1NSU_GNSS * Latitude: 31.750801 * Longitude: -93.097604 * Method/Device: GNSS Receiver (GNSS)
1ULM_GNSS * Latitude: 32.529034 * Longitude: -92.075907 * Method/Device: GNSS Receiver (GNSS)
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1SiteSiteVardić, Katarina
2LATITUDELatitudeVardić, KatarinaGNSS Receiver (GNSS)Geocode
3LONGITUDELongitudeVardić, KatarinaGNSS Receiver (GNSS)Geocode
4Velocity, northV Nmm/aVardić, KatarinaGNSS Receiver (GNSS)
5Velocity, north, standard deviationV N std dev±Vardić, KatarinaGNSS Receiver (GNSS)
6Velocity, eastV Emm/aVardić, KatarinaGNSS Receiver (GNSS)
7Velocity, east, standard deviationV E std dev±Vardić, KatarinaGNSS Receiver (GNSS)
8Velocity, verticalV vertmm/aVardić, KatarinaGNSS Receiver (GNSS)
9Velocity, vertical, standard deviationV vert std dev±Vardić, KatarinaGNSS Receiver (GNSS)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
6755 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)