Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Höppner, Natalie; Chiessi, Cristiano Mazur; Lucassen, Friedrich; Zavala, Karina; Becchio, Raúl A; Kasemann, Simone A (2021): Strontium (Sr), neodymium (Nd) and lead (Pb) isotope values from suspended and riverbed sediments of the Plata River and from two marine sediment cores in the western subtropical South Atlantic [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.932859

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Sediments transported in rivers reflect the geology of the catchment area and its radiogenic isotopic composition. These isotopic signatures are not significantly altered by weathering, transport or deposition and hence can document variations in sediment supply. Here we present strontium (Sr), neodymium (Nd) and lead (Pb) isotope values from suspended and riverbed sediments of the Plata River drainage basin, the second largest on the South American continent, and from two marine sediment cores collected off the mouth of the Plata River in the western subtropical South Atlantic. Our modern riverine data suggest that the basin has three main sediment source areas, namely the upper Paraná River, the Uruguay River and the Andean draining rivers. Sediments from the Andean draining rivers (Salado and Bermejo Rivers) have the most radiogenic Pb (i.e. >18.5 for 206Pb/204Pb) and Sr (average of 0.726 ± 0.031; 2SD) isotopic signatures, and least radiogenic εNd values (average of -10.5 ± 3.1; 2SD). The upper Paraná and Uruguay Rivers have less radiogenic Pb (i.e. <18.5 for 206Pb/204Pb) and Sr (average of 0.715 ± 0.003; 2SD) isotopic signatures. While the upper Paraná River has average εNd values of -7.8 ± 1.1 (2SD), the Uruguay River has average εNd values of -5.9 ± 0.2 (2SD). The modern isotopic signature at the mouth of the Plata River is largely dominated by the Andean draining rivers. To reconstruct changes in sediment supply to the western subtropical South Atlantic, we used this new riverine dataset together with literature values from the Argentine continental margin to interpret the data from two marine sediment cores. The downcore records cover the last ~ 30 kyr and show two short-lived excursions (i.e. Heinrich Stadial 1 and the Younger Dryas) and two long-term trends (i.e. late Pleistocene (i.e. ~29 to 11 cal ka BP for Sr and ~29 to 25 cal ka BP for Nd), and early and mid-Holocene). We suggest that the short-lived excursions result from increased precipitation in the headlands of the Andean draining rivers during Heinrich Stadial 1 and the Younger Dryas. The late Pleistocene long-term change showed an increase in the contribution of material from the Plata River drainage basin in relation to material from the Argentine continental margin most probably due to low sea-level. The early and mid-Holocene long-term trend showed the opposite change in sediment input and was related to decreased precipitation over most of the Plata River drainage basin.
Keyword(s):
Marine cores; paleoclimatology; Plata River drainage basin; Provenance; Quaternary; Radiogenic isotopes; South America; South Atlantic; Suspended particulate matter
Supplement to:
Höppner, Natalie; Chiessi, Cristiano Mazur; Lucassen, Friedrich; Zavala, Karina; Becchio, Raúl A; Kasemann, Simone A (2021): Modern isotopic signatures of Plata River sediments and changes in sediment supply to the western subtropical South Atlantic during the last 30 kyr. Quaternary Science Reviews, 259, 106910, https://doi.org/10.1016/j.quascirev.2021.106910
Coverage:
Median Latitude: -28.907226 * Median Longitude: -52.442609 * South-bound Latitude: -32.686500 * West-bound Longitude: -66.204960 * North-bound Latitude: -16.596967 * East-bound Longitude: -50.109000
Date/Time Start: 1999-12-12T17:21:00 * Date/Time End: 2016-03-01T00:00:00
Size:
4 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: