Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Salvatteci, Renato; Mehrtens, Hela (eds.) (2021): SFB754 Downcore proxy records [dataset editorial publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.927048

Always quote citation above when using data! You can download the citation in several formats below.

Published: 2021-01-26DOI registered: 2021-03-31

RIS CitationBibTeX Citation ShareShow MapGoogle Earth

Abstract:
One of the objectives of the SFB 754 was the reconstruction of the factors controlling the intensity and the spatial extent of the OMZ in the Eastern Tropical Pacific, specifically off Peru, since the Last Glacial Maximum (21000 years ago). For the purpose of these paleoceanographic studies, long gravity cores were recovered during four scientific expeditions (M77/1, M77/2, M92, and M135; see Figure 4). During the cruises M77/1 and M77/2 in 2008, 51 sediment cores were retrieved below and in the centre of the OMZ, from ~17° S to the equator (Pfannkuche et al., 2011; see Figure 4). Most of the records collected in the core of the OMZ (i.e. ~200 to ~500 m depth), from ~8 to 15° S, show sedimentary discontinuities during the Holocene (last 11700 years), which preclude high resolution paleoceanographic reconstructions in this area (Erdem et al., 2016; Salvatteci et al., 2014, 2016). Based on the information collected during M77/1 and M77/2 and also on the scientific literature, cruise M135 aimed specifically at finding the most complete Holocene sequence in the Eastern Tropical South Pacific. For this purpose, a detailed paleoceanographic survey took place at ~17° S, an area that is less affected by processes that can produce sediment discontinuities. Six sediment cores were retrieved, two of which contained the most complete sediment sequences for the last 10 000 years (Salvatteci et al., 2019).
Further details:
Funding:
German Research Foundation (DFG), grant/award no. 27542298: Climate - Biogeochemistry Interactions in the Tropical Ocean
Coverage:
Median Latitude: 5.996025 * Median Longitude: -49.550212 * South-bound Latitude: -17.639667 * West-bound Longitude: -82.624500 * North-bound Latitude: 43.235833 * East-bound Longitude: 5.591667
Date/Time Start: 1860-01-01T00:00:00 * Date/Time End: 2017-05-20T16:15:00
Size:
55 datasets

Datasets listed in this editorial publication

  1. Beil, S (2020): Phosphorus concentration and speciation data of core SN4 (Tarfaya Basin). https://doi.org/10.1594/PANGAEA.912277
  2. Beil, S (2020): Stable isotope data (bulk carbonates) from Core LB1 (La Bedoule, southern France). https://doi.org/10.1594/PANGAEA.912378
  3. Beil, S (2020): Stable isotope data (bulk carbonates) from Core LB3 (La Bedoule, southern France). https://doi.org/10.1594/PANGAEA.912377
  4. Beil, S (2020): Stable isotope data (bulk carbonates) from Cores LB1 and LB3 (La Bedoule, southern France). https://doi.org/10.1594/PANGAEA.912379
  5. Beil, S; Kuhnt, W (2020): Stable isotope analysis (bulk carbonate) of core SN4 in Tarfaya Basin, southern Morocco. https://doi.org/10.1594/PANGAEA.912278
  6. Beil, S; Kuhnt, W (2020): Stable isotope analysis (organic material) of core SN4 in Tarfaya Basin, southern Morocco. https://doi.org/10.1594/PANGAEA.912279
  7. Beil, S; Kuhnt, W; Holbourn, AE et al. (2018): New insights into Cenomanian paleoceanography and climate evolution from the Tarfaya Basin, southern Morocco. https://doi.org/10.1594/PANGAEA.889137
  8. Beil, S; Kuhnt, W; Holbourn, AE et al. (2018): Elemental raw data, analysed with XRF core scanner on core SN4 in Tarfaya Basin, southern Morocco. https://doi.org/10.1594/PANGAEA.889143
  9. Beil, S; Kuhnt, W; Holbourn, AE et al. (2018): Geochemical analysis of core SN4 in Tarfaya Basin, southern Morocco. https://doi.org/10.1594/PANGAEA.889133
  10. Beil, S; Kuhnt, W; Holbourn, AE et al. (2018): Natural Gamma Ray of core SN4 in Tarfaya Basin, southern Morocco. https://doi.org/10.1594/PANGAEA.889136
  11. Beil, S; Kuhnt, W; Holbourn, AE et al. (2018): Stable isotope analysis (bulk carbonate) of core SN4 in Tarfaya Basin, southern Morocco. https://doi.org/10.1594/PANGAEA.889134
  12. Beil, S; Kuhnt, W; Holbourn, AE et al. (2018): Stable isotope analysis (organic material) of core SN4 in Tarfaya Basin, southern Morocco. https://doi.org/10.1594/PANGAEA.889135
  13. Beil, S; Kuhnt, W; Holbourn, AE et al. (2020): Cretaceous Oceanic Anoxic Events prolonged by phosphorus cycle feedbacks, data from SN4 and La Bedoule. https://doi.org/10.1594/PANGAEA.912375
  14. Beil, S; Lorenzen, J (2020): Borehole log derived Natural Gamma Ray (NGR) data from Core LB3 (La Bedoule, southern France). https://doi.org/10.1594/PANGAEA.912372
  15. Beil, S; Lorenzen, J (2020): Borehole log derived Natural Gamma Ray (NGR) data from Cores LB1 (La Bedoule, southern France). https://doi.org/10.1594/PANGAEA.912369
  16. Beil, S; Lorenzen, J (2020): Borehole log derived Natural Gamma Ray (NGR) data from Cores LB1 and LB3 (spliced) (La Bedoule, southern France). https://doi.org/10.1594/PANGAEA.912480
  17. Doering, K (2017): Concentrations of biogenic opal and organic carbon of sediment core M77/2_029-3. https://doi.org/10.1594/PANGAEA.877427
  18. Doering, K (2017): Downcore records of the diatom assemblage counts from the small-mixed diatom fraction (11-32 µm) of sediment core M77/2_003-2. https://doi.org/10.1594/PANGAEA.877428
  19. Doering, K (2017): Downcore records of the diatom assemblage counts from the small-mixed diatom fraction (11-32 µm) of sediment core M77/2_029-3. https://doi.org/10.1594/PANGAEA.877590
  20. Doering, K (2017): Downcore records of the diatom assemblage counts from the small-mixed diatom fraction (11-32 µm) of sediment core M77/2_052-2. https://doi.org/10.1594/PANGAEA.877430
  21. Doering, K (2017): Downcore records of the diatom assemblage counts from the small-mixed diatom fraction (11-32 µm) of sediment core SO147_106KL. https://doi.org/10.1594/PANGAEA.877431
  22. Doering, K; Ehlert, C; Grasse, P et al. (2021): Diatom assemblage of core M77/2_003-2. https://doi.org/10.1594/PANGAEA.927604
  23. Doering, K; Ehlert, C; Martinez, P et al. (2019): Stable Silicon Isotopes data, biogenic opal concentrations and bulk sediment nitrogen isotope data of Trigger cores M772-024, 005 and 003 off Peru. https://doi.org/10.1594/PANGAEA.901858
  24. Doering, K; Erdem, Z; Ehlert, C et al. (2017): 14C and age models for cores M772-052 and M772-029; diatom assemblages and biogenic opal and organic carbon data. https://doi.org/10.1594/PANGAEA.877432
  25. Erdem, Z; Schönfeld, J; Rathburn, AE et al. (2019): Peruvian Margin living benthic foraminiferal distributions in percentage. https://doi.org/10.1594/PANGAEA.901840
  26. Glock, N (2019): Downcore data for sediment core M77/2_52-2. https://doi.org/10.1594/PANGAEA.900467
  27. Nürnberg, D; Böschen, T; Doering, K et al. (2015): Stable isotopes, Mg/Ca ratios and sea surface temperatures on foraminifera from sediment cores off equatorial Peru during the last ~17kyr. https://doi.org/10.1594/PANGAEA.848849
  28. Nürnberg, D; Böschen, T; Doering, K et al. (2015): Stable isotopes, Mg/Ca ratios and sea surface temperatures on planktonic and benthic foraminifera of sediment core M77/2_056-5. https://doi.org/10.1594/PANGAEA.848847
  29. Nürnberg, D; Böschen, T; Doering, K et al. (2015): Stable isotopes, Mg/Ca ratios and sea surface temperatures on planktonic and benthic foraminifera of sediment core M77/2_059-1. https://doi.org/10.1594/PANGAEA.848848
  30. Salvatteci, R (2018): Age, TOC and deposition rates measured on cores B04 and B05 off Peru. https://doi.org/10.1594/PANGAEA.888398
  31. Salvatteci, R (2018): Anchovy and sardine scaled depostion rates in the Humboldt Current System off Peru during the last 150 years. https://doi.org/10.1594/PANGAEA.888402
  32. Salvatteci, R (2018): Redox sensitive metals, d15N, hydrogen index and TOC measured on a composite record (B14-G10-G14) off Peru covering the last 25 kyr. https://doi.org/10.1594/PANGAEA.887109
  33. Salvatteci, R (2018): SST gradients in the Humboldt Current System off Peru during the last 150 years. https://doi.org/10.1594/PANGAEA.888401
  34. Salvatteci, R (2019): Alkenone derived SST from sediment core M77/2_003-2. https://doi.org/10.1594/PANGAEA.897232
  35. Salvatteci, R (2019): Alkenone derived SST from sediment core M77/2_005-3. https://doi.org/10.1594/PANGAEA.897233
  36. Salvatteci, R (2019): Alkenone derived SST from sediment core M77/2_024-5. https://doi.org/10.1594/PANGAEA.897234
  37. Salvatteci, R (2019): Alkenone derived SST from sediment core M77/2_029-3. https://doi.org/10.1594/PANGAEA.897235
  38. Salvatteci, R (2019): Alkenone derived SST from sediment core M135_252-3. https://doi.org/10.1594/PANGAEA.897236
  39. Salvatteci, R (2019): Alkenone derived SST from sediment core M135_254-3. https://doi.org/10.1594/PANGAEA.897237
  40. Salvatteci, R (2020): Fish debris in the Humboldt Current for the last 25 kyr. https://doi.org/10.1594/PANGAEA.917873
  41. Salvatteci, R (2020): Fish debris in the Humboldt Current for the last 25 kyr: Fish debris concentrations and fluxes of unidentified vertebrae. https://doi.org/10.1594/PANGAEA.917869
  42. Salvatteci, R (2020): Fish debris in the Humboldt Current for the last 25 kyr: Fish debris fluxes. https://doi.org/10.1594/PANGAEA.917871
  43. Salvatteci, R (2020): Fish debris in the Humboldt Current for the last 25 kyr: Proxies for environmental conditions and fish debris preservation. https://doi.org/10.1594/PANGAEA.917867
  44. Salvatteci, R (2020): Fish debris in the Humboldt Current for the last 25 kyr: Time series of the main 3 principal components. https://doi.org/10.1594/PANGAEA.917872
  45. Salvatteci, R; Field, D; Gutièrrez, D et al. (2018): Fish scale deposition rates and export production from 1860 to 2005 AD off Peru. https://doi.org/10.1594/PANGAEA.888404
  46. Salvatteci, R; Schneider, RR; Blanz, T et al. (2019): Deglacial to Holocene Ocean Temperatures in the Humboldt Current System as Indicated by Alkenone Paleothermometry. https://doi.org/10.1594/PANGAEA.897239
  47. Schönfeld, J (2015): Accumulation rates of Site S13 (SW Morocco). https://doi.org/10.1594/PANGAEA.844807
  48. Schönfeld, J; Kuhnt, W; Erdem, Z et al. (2015): Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. recent oxygen minimum zones. https://doi.org/10.1594/PANGAEA.844808
  49. Scholz, F (2014): Nitrogen isotope and element concentration data for piston core M77/2-024-5 from the Peruvian continental margin. https://doi.org/10.1594/PANGAEA.830775
  50. Scholz, F (2014): The sedimentary fingerprint of an open-marine iron shuttle. https://doi.org/10.1594/PANGAEA.831730
  51. Scholz, F (2014): Total organic carbon data for piston core M77/2-024-5 from the Peruvian continental margin. https://doi.org/10.1594/PANGAEA.830776
  52. Scholz, F (2019): Iron speciation measured on core Tarfaya SN4. https://doi.org/10.1594/PANGAEA.906319
  53. Scholz, F (2019): Nitrogen isotope and element concentration data for core Tarfaya SN4. https://doi.org/10.1594/PANGAEA.906318
  54. Scholz, F (2019): Proxy records for iron, sulfur and nitrogen cycling in the Tarfaya upwelling system. https://doi.org/10.1594/PANGAEA.906320
  55. Scholz, F; McManus, J; Mix, AC et al. (2014): Nitrogen isotope, total organic carbon and element concentration data for piston core M77/2-024-5 from the Peruvian continental margin. https://doi.org/10.1594/PANGAEA.830777