Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Tames-Espinosa, Mayte; Martinez, I; Romero-Kutzner, Vanesa; Coca, Josep; Algueró-Muñiz, Maria; Horn, Henriette G; Ludwig, Andrea; Taucher, Jan; Bach, Lennart Thomas; Riebesell, Ulf; Packard, Ted T; Gómez, May (2020): Seawater carbonate chemistry and respiratory metabolism of microplankton [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.925263

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
In the autumn of 2014, nine large mesocosms were deployed in the oligotrophic subtropical North-Atlantic coastal waters off Gran Canaria (Spain). Their deployment was designed to address the acidification effects of CO2 levels from 400 to 1,400 μatm, on a plankton community experiencing upwelling of nutrient-rich deep water. Among other parameters, chlorophyll a (chl-a), potential respiration (PHi), and biomass in terms of particulate protein (B) were measured in the microplankton community (0.7–50.0 μm) during an oligotrophic phase (Phase I), a phytoplankton-bloom phase (Phase II), and a post-bloom phase (Phase III). Here, we explore the use of the PHi/chl-a ratio in monitoring shifts in the microplankton community composition and its metabolism. PHi/chl-a values below 2.5 μL O2/h/ (μg chl-a) indicated a community dominated by photoautotrophs. When PHi/chl-a ranged higher, between 2.5 and 7.0 μL O2/h/ (μg chl-a), it indicated a mixed community of phytoplankton, microzooplankton and heterotrophic prokaryotes. When PHi/chl-a rose above 7.0 μL O2/h/ (μg chl-a), it indicated a community where microzooplankton proliferated (>10.0 μL O2/h/ (μg chl-a)), because heterotrophic dinoflagellates bloomed. The first derivative of B, as a function of time (dB/dt), indicates the rate of protein build-up when positive and the rate of protein loss, when negative. It revealed that the maximum increase in particulate protein (biomass) occurred between 1 and 2 days before the chl-a peak. A day after this peak, the trough revealed the maximum net biomass loss. This analysis did not detect significant changes in particulate protein, neither in Phase I nor in Phase III. Integral analysis of PHi, chl-a and B, over the duration of each phase, for each mesocosm, reflected a positive relationship between PHi and pCO2 during Phase II [alpha = 230*10−5 μL O2/h/L/(μatm CO2)/(phase-day), R2 = 0.30] and between chl-a and pCO2 during Phase III [alpha= 100*10−5 μg chl-a/L/ (μ atmCO2)/ (phase-day), R2 = 0.84]. At the end of Phase II, a harmful algal species (HAS), Vicicitus globosus, bloomed in the high pCO2 mesocosms. In these mesocosms, microzooplankton did not proliferate, and chl-a retention time in the water column increased. In these V. globosus-disrupted communities, the PHi/chl-a ratio [4.1 +- 1.5 μL O2/h/(μg chl-a)] was more similar to the PHi/chl-a ratio in a mixed plankton community than to a photoautotroph-dominated one.
Keyword(s):
Coast and continental shelf; Community composition and diversity; Entire community; Field experiment; Macro-nutrients; Mesocosm or benthocosm; North Atlantic; Pelagos; Respiration; Temperate
Supplement to:
Tames-Espinosa, Mayte; Martinez, I; Romero-Kutzner, Vanesa; Coca, Josep; Algueró-Muñiz, Maria; Horn, Henriette G; Ludwig, Andrea; Taucher, Jan; Bach, Lennart Thomas; Riebesell, Ulf; Packard, Ted T; Gómez, May (2020): Metabolic Responses of Subtropical Microplankton After a Simulated Deep-Water Upwelling Event Suggest a Possible Dominance of Mixotrophy Under Increasing CO2 Levels. Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.00307
Related to:
Horn, Henriette G (2018): KOSMOS 2014 mesocosm study: microzooplankton abundances. PANGAEA, https://doi.org/10.1594/PANGAEA.887183
Taucher, Jan; Bach, Lennart Thomas (2018): KOSMOS 2014 mesocosm study: carbonate system. PANGAEA, https://doi.org/10.1594/PANGAEA.889746
Taucher, Jan; Nauendorf, Alice (2018): KOSMOS 2014 mesocosm study: chlorophyll a. PANGAEA, https://doi.org/10.1594/PANGAEA.889731
Original version:
Tames-Espinosa, Mayte (2019): KOSMOS 2014 mesocosm study: Respiratory metabolism of microplankton. PANGAEA, https://doi.org/10.1594/PANGAEA.904292
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2020): seacarb: seawater carbonate chemistry with R. R package version 3.2.14. https://CRAN.R-project.org/package=seacarb
Coverage:
Latitude: 27.928060 * Longitude: -15.365280
Date/Time Start: 2014-09-28T00:00:00 * Date/Time End: 2015-10-31T00:00:00
Event(s):
KOSMOS_2014_Atlantic-Reference * Latitude: 27.928060 * Longitude: -15.365280 * Date/Time Start: 2014-09-27T00:00:00 * Date/Time End: 2014-11-27T23:59:00 * Location: Subtropical North Atlantic * Campaign: KOSMOS_2014 * Method/Device: Mesocosm experiment (MESO)
KOSMOS_2014_Mesocosm-M1 * Latitude: 27.928060 * Longitude: -15.365280 * Date/Time Start: 2014-09-27T00:00:00 * Date/Time End: 2014-11-27T23:59:00 * Location: Subtropical North Atlantic * Campaign: KOSMOS_2014 * Method/Device: Mesocosm experiment (MESO)
KOSMOS_2014_Mesocosm-M2 * Latitude: 27.928060 * Longitude: -15.365280 * Date/Time Start: 2014-09-27T00:00:00 * Date/Time End: 2014-11-27T23:59:00 * Location: Subtropical North Atlantic * Campaign: KOSMOS_2014 * Method/Device: Mesocosm experiment (MESO)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2020) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-11-30.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEventTames-Espinosa, Mayte
2TypeTypeTames-Espinosa, Maytestudy
3Mesocosm labelMeso labelTames-Espinosa, Mayte
4DATE/TIMEDate/TimeTames-Espinosa, MayteGeocode
5Day of experimentDOEdayTames-Espinosa, Mayte
6Respiration rate, oxygen, potentialResp O2 potµl/l/hTames-Espinosa, Mayte
7Proteins, particulateProt partmg/lTames-Espinosa, MayteBiomass (mg protein L-1)
8Chlorophyll aChl aµg/lTames-Espinosa, Mayte
9AmoebaAmoeba#/lHorn, Henriette GAmoeba
10CiliatesCiliates#/lHorn, Henriette GCiliata Cone
11CiliatesCiliates#/lHorn, Henriette GCiliata Prolate spheroid
12CiliatesCiliates#/lHorn, Henriette GCiliata Sphere <30 µm
13CiliatesCiliates#/lHorn, Henriette GCiliata Sphere >30 µm
14CiliatesCiliates#/lHorn, Henriette GCiliata cf Litonotus
15Scuticociliates, fractionatedScuticociliates frac#/lHorn, Henriette GScuticociliata indet.
16Tintinnida indeterminataTintinnida indet#/lHorn, Henriette GTintinnina indet. 1
17Tintinnida indeterminataTintinnida indet#/lHorn, Henriette GTintinnina indet. 2
18DinophyceaeDinophyceae#/lHorn, Henriette GDinophyceae indet. (thecat)
19AmphidiniumAmphidinium#/lHorn, Henriette GAmphidinium sp.
20GymnodiniumGymnodinium#/lHorn, Henriette GGymnodinium indet. 20-25 µm
21GymnodiniumGymnodinium#/lHorn, Henriette GGymnodinium indet. 20-25 µm
22GymnodiniumGymnodinium#/lHorn, Henriette GGymnodinium indet. <25 µm
23GymnodiniumGymnodinium#/lHorn, Henriette GGymnodinium indet. >25?m
24GymnodiniumGymnodinium#/lHorn, Henriette GGyrodinium sp. < 25 µm
25GymnodiniumGymnodinium#/lHorn, Henriette GGyrodinium sp. > 25 µm
26Katodinium glaucumK. glaucum#/lHorn, Henriette GKatodinium glaucum
27Torodinium sp.Torodinium sp.#/lHorn, Henriette GTorodinium sp.
28Pronoctiluca sp.Pronoctiluca sp.#/lHorn, Henriette GPronoctiluca sp.
29Diplopsalis group indeterminataDiplopsalis gr indet#/lHorn, Henriette GDiplopsalis indet.
30OxytoxumOxytoxum#/lHorn, Henriette GOxytoxum sp.
31Protoperidinium sp.Protoperidinium sp.#/lHorn, Henriette GProtoperidinium sp. <25 µm
32Protoperidinium sp.Protoperidinium sp.#/lHorn, Henriette GProtoperidinium sp. 25-40 µm
33Protoperidinium sp.Protoperidinium sp.#/lHorn, Henriette GProtoperidinium sp. >40 µm
34Carbon, inorganic, dissolvedDICµmol/kgTaucher, Jan
35Alkalinity, totalATµmol/kgTaucher, Jan
36SalinitySalTaucher, Jan
37Temperature, waterTemp°CTaucher, Jan
38pHpHTaucher, Jantotal scale
39Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmTaucher, Jan
40Calcite saturation stateOmega CalTaucher, Jan
41Bicarbonate ion[HCO3]-%Taucher, Jan[HCO3-]/[H+]F
42Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
43pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
44Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
45Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
46Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
47Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
48Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
49Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
50Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
6763 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)