Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Giesche, Alena; Lombardo, Umberto; Finsinger, Walter; Veit, Heinz (2020): Carbon and Nitrogen concentrations in sediment core LR400 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.924020, In: Giesche, A et al. (2020): Multi-proxy analysis of sediment cores from Lago Rogaguado and Llanos de Moxos [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.924034

Always quote citation above when using data! You can download the citation in several formats below.

Published: 2020-10-23DOI registered: 2021-02-19

RIS CitationBibTeX Citation ShareShow MapGoogle Earth

Keyword(s):
Bolivian Amazon; climate; Lake level; land use change; Llanos de Moxos; Shallow lake
Related to:
Giesche, Alena (2014): Reconstructing Environmental Conditions of the past 8000 years at Lago Rogaguado, Bolivia (13°S) [thesis]. University of Bern, MSc Thesis
Giesche, Alena; Lombardo, Umberto; Finsinger, Walter; Veit, Heinz (2021): Reconstructing Holocene landscape and environmental changes at Lago Rogaguado, Bolivian Amazon. Journal of Paleolimnology, 65(2), 235-253, https://doi.org/10.1007/s10933-020-00164-8
Coverage:
Latitude: -12.997390 * Longitude: -65.986138
Date/Time Start: 2012-09-25T00:00:00 * Date/Time End: 2012-09-25T00:00:00
Minimum DEPTH, sediment/rock: 0.005 m * Maximum DEPTH, sediment/rock: 1.245 m
Event(s):
LR400 * Latitude: -12.997390 * Longitude: -65.986138 * Date/Time: 2012-09-25T00:00:00 * Method/Device: Gravity corer, UWITEC (GCUWI) * Comment: UWITEC gravity corer and Livingstone piston corer; Temporal coverage: -63 to c. 11000 cal years BP
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
DEPTH, sediment/rockDepth sedmGiesche, AlenaGeocode
Depth, bottom/maxDepth botmGiesche, Alena
Depth, top/minDepth topmGiesche, Alena
Nitrogen, totalTN%Giesche, AlenaElement analyser CNS, vario EL Cube
Carbon, totalTC%Giesche, AlenaElement analyser CNS, vario EL Cube
Carbon/Nitrogen ratioC/NGiesche, AlenaElement analyser CNS, vario EL Cube
Size:
625 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Depth sed [m]

Depth bot [m]

Depth top [m]

TN [%]

TC [%]

C/N
0.0050.010.000.130.856.71
0.0150.020.010.151.006.83
0.0250.030.020.161.207.64
0.0350.040.030.171.136.92
0.0450.050.040.161.076.80
0.0550.060.050.141.097.71
0.0650.070.060.141.128.16
0.0750.080.070.161.096.92
0.0850.090.080.151.107.08
0.0950.100.090.141.097.85
0.1050.110.100.151.086.95
0.1150.120.110.161.066.83
0.1250.130.120.151.067.00
0.1350.140.130.151.066.90
0.1450.150.140.151.047.17
0.1550.160.150.141.027.37
0.1650.170.160.120.998.31
0.1750.180.170.151.047.19
0.1850.190.180.141.037.18
0.1950.200.190.140.997.23
0.2050.210.200.140.946.87
0.2150.220.210.130.896.84
0.2250.230.220.090.515.93
0.2350.240.230.080.364.46
0.2450.250.240.070.395.95
0.2550.260.250.060.396.31
0.2650.270.260.060.365.92
0.2750.280.270.080.364.47
0.2850.290.280.060.376.12
0.2950.300.290.080.374.44
0.3050.310.300.060.385.84
0.3150.320.310.080.374.71
0.3250.330.320.060.375.95
0.3350.340.330.080.364.68
0.3450.350.340.080.374.68
0.3550.360.350.080.394.62
0.3650.370.360.080.425.25
0.3750.380.370.080.465.45
0.3850.390.380.100.585.97
0.3950.400.390.110.595.59
0.4050.410.400.090.647.35
0.4150.420.410.100.616.04
0.4250.430.420.100.595.95
0.4350.440.430.080.627.48
0.4450.450.440.110.625.79
0.4550.460.450.100.615.91
0.4650.470.460.080.637.49
0.4750.480.470.100.616.27
0.4850.490.480.100.646.19
0.4950.500.490.090.616.77
0.5050.510.500.100.687.00
0.5150.520.510.090.606.61
0.5250.530.520.080.678.24
0.5350.540.530.110.767.06
0.5450.550.540.100.706.77
0.5550.560.550.090.636.78
0.5650.570.560.110.716.65
0.5750.580.570.100.798.21
0.5850.590.580.100.797.55
0.5950.600.590.110.847.36
0.6050.610.600.100.928.98
0.6150.620.610.141.117.98
0.6250.630.620.111.099.75
0.6350.640.630.131.108.60
0.6450.650.640.131.7313.10
0.6550.660.650.121.189.74
0.6650.670.660.131.299.95
0.6750.680.670.141.9313.89
0.6850.690.680.182.2512.60
0.6950.700.690.152.1514.36
0.7050.710.700.182.4413.51
0.7150.720.710.182.5213.98
0.7250.730.720.202.8814.61
0.7350.740.730.223.1814.46
0.7450.750.740.243.5714.62
0.7550.760.750.203.3516.52
0.7650.770.760.243.4614.71
0.7750.780.770.213.2515.61
0.7850.790.780.233.3915.07
0.7950.800.790.213.3716.06
0.8050.810.800.213.2615.79
0.8150.820.810.203.1115.64
0.8250.830.820.092.099.87
0.8350.840.830.061.144.96
0.8450.850.840.050.254.51
0.8550.860.850.050.254.65
0.8650.870.860.050.264.79
0.8750.880.870.060.264.65
0.8850.890.880.050.254.48
0.8950.900.890.060.244.28
0.9050.910.900.060.264.70
0.9150.920.910.060.274.67
0.9250.930.920.060.294.95
0.9350.940.930.060.305.07
0.9450.950.940.060.324.70
0.9550.960.950.070.335.06
0.9650.970.960.070.345.20
0.9750.980.970.060.345.35
0.9850.990.980.070.345.30
0.9951.000.990.070.374.88
1.0051.011.000.080.434.43
1.0151.021.010.080.606.32
1.0251.031.020.100.658.45
1.0351.041.030.090.596.64
1.0451.051.040.090.523.91
1.0551.061.050.090.556.74
1.0651.071.060.100.726.79
1.0751.081.070.110.758.04
1.0851.091.080.100.767.47
1.0951.101.090.100.727.36
1.1051.111.100.100.754.94
1.1151.121.110.100.748.20
1.1251.131.120.100.746.77
1.1351.141.130.110.716.93
1.1451.151.140.110.736.47
1.1551.161.150.110.746.74
1.1651.171.160.110.766.75
1.1751.181.170.110.776.64
1.1851.191.180.120.796.55
1.1951.201.190.130.836.65
1.2051.211.200.130.865.18
1.2151.221.210.120.866.88
1.2251.231.220.130.876.73
1.2351.241.230.130.877.07
1.2451.251.240.120.886.77