Pérez-Asensio, José N; Frigola, Jaime; Pena, Leopoldo D; Sierro, Francisco Javier; Reguera, Maria Isabel; Rodríguez-Tovar, Francisco Javier; Dorador, Javier; Asioli, Alessandra; Kuhlmann, Jannis; Huhn, Katrin; Cacho, Isabel (2020): Foraminiferal raw counts, sedimentation rates, total foraminiferal absolute and relative abundance, dominant species percentages, foraminiferal microhabitats, ecological groups, oxygen index, TOC, stable isotope data, C37 alkenones and UP10 data [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.910732, Supplement to: Pérez-Asensio, JN et al. (2020): Changes in western Mediterranean thermohaline circulation in association with a deglacial Organic Rich Layer formation in the Alboran Sea. Quaternary Science Reviews, 228, 106075, https://doi.org/10.1016/j.quascirev.2019.106075
Always quote citation above when using data! You can download the citation in several formats below.
Published: 2020-01-13 • DOI registered: 2020-07-10
Abstract:
The accumulation of an Organic Rich Layer (ORL) during the last deglaciation in the Alboran Sea (western Mediterranean Sea) and its link to changes in deep and intermediate water circulation are here investigated. Benthic foraminiferal assemblages and the shallow infaunal foraminifer Uvigerina peregrina δ13C record support the establishment of sustained high organic matter fluxes, and thus eutrophic conditions at the sea floor, during the late phase of the ORL (Younger Dryas to early Holocene periods). Since organic matter fluxes were lower (mesotrophic conditions) during the Bølling-Allerød period, they cannot be solely responsible for the ORL initiation. Geochemical, sedimentological and micropalaeontological proxies support a major weakening of the deep-water convection in the Gulf of Lion as the main driver for the development of poorly-ventilated conditions from intermediate depths (946 m) to the deep western Mediterranean basin that promoted the beginning of the ORL deposition. Nevertheless, a better ventilation at intermediate depths was established during the late ORL, while the deep basin remained poorly ventilated. We propose that our data reflect the arrival of a new better-ventilated intermediate water mass analogue to the current Levantine Intermediate Water (LIW) and/or a new intermediate water mass from the Gulf of Lion. The ultimate source of this water mass needs to be further explored but chronologies of the changes recorded here indicate that intermediate and deep ventilation phases were decoupled between the western and eastern Mediterranean basins during the deglaciation and early-middle Holocene.
Coverage:
Median Latitude: 37.626868 * Median Longitude: -0.860738 * South-bound Latitude: 36.143333 * West-bound Longitude: -3.989214 * North-bound Latitude: 40.497333 * East-bound Longitude: 4.028167
Date/Time Start: 1995-07-09T00:00:00 * Date/Time End: 2009-09-19T23:25:53
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Size:
18 datasets
Download Data
Datasets listed in this publication series
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Benthic foraminiferal raw counts of sediment core HER_GC_UB06. https://doi.org/10.1594/PANGAEA.910727
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Dominant benthic foraminifera and microhabitats in sediment core HER_GC_UB06. https://doi.org/10.1594/PANGAEA.910794
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Stable isotope ratios of benthic foraminifera from sediment core HER_GC_UB06. https://doi.org/10.1594/PANGAEA.910798
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Stable carbon isotope ratio of Globigerina bulloides from sediment core HER_GC_UB06. https://doi.org/10.1594/PANGAEA.910802
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Sedimentation rate of sediment core HER_GC_UB06. https://doi.org/10.1594/PANGAEA.910803
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): TOC content of sediment core HER_GC_UB06. https://doi.org/10.1594/PANGAEA.910806
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Benthic foraminiferal raw counts of sediment core MD95-2043. https://doi.org/10.1594/PANGAEA.910728
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Number of benthic foraminifera and microhabitats in sediment core MD95-2043. https://doi.org/10.1594/PANGAEA.910795
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): C37 alkenones in sediment core MD95-2043. https://doi.org/10.1594/PANGAEA.910797
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Stable carbon isotope ratio of Cibicidoides pachyderma from sediment core MD95-2043. https://doi.org/10.1594/PANGAEA.910799
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Sedimentation rate of sediment core MD95-2043. https://doi.org/10.1594/PANGAEA.910804
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): TOC content of sediment core MD95-2043. https://doi.org/10.1594/PANGAEA.910807
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Benthic foraminiferal raw counts of sediment core MD99-2343. https://doi.org/10.1594/PANGAEA.910729
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Number of benthic foraminifera and microhabitats in sediment core MD99-2343. https://doi.org/10.1594/PANGAEA.910796
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Stable carbon isotope ratio of Cibicidoides pachyderma from sediment core MD99-2343. https://doi.org/10.1594/PANGAEA.910800
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): Sedimentation rate of sediment core MD99-2343. https://doi.org/10.1594/PANGAEA.910805
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): TOC content of sediment core MD99-2343. https://doi.org/10.1594/PANGAEA.910808
- Pérez-Asensio, JN; Frigola, J; Pena, LD et al. (2020): UP10 proxy analysis of sediment core MD99-2343. https://doi.org/10.1594/PANGAEA.910809