Not logged in
Data Publisher for Earth & Environmental Science

Kostrova, Svetlana S; Meyer, Hanno; Fernandoy, Francisco; Werner, Martin; Tarasov, Pavel E (2019): Stable isotope characteristics of precipitation in southeast Siberia. PANGAEA,, Supplement to: Kostrova, SS et al. (2020): Moisture origin and stable isotope characteristics of precipitation in southeast Siberia. Hydrological Processes, 34(1), 51-67,

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

The paper presents oxygen and hydrogen isotopes of 284 precipitation event samples systematically collected in Irkutsk, in the Baikal region (southeast Siberia), between June 2011 and April 2017. This is the first high-resolution dataset of stable isotopes of precipitation from this poorly studied region of continental Asia, which has a high potential for isotope-based palaeoclimate research. The dataset revealed distinct seasonal variations: relatively high δ¹⁸O (up to -4‰) and δD (up to -40‰) values characterize summer air masses, and lighter isotope composition (-41‰ for δ¹⁸O and -322‰ for δD) is characteristic of winter precipitation. Our results show that air temperature mainly affects the isotope composition of precipitation, and no significant correlations were obtained for precipitation amount and relative humidity. A new temperature dependence was established for weighted mean monthly precipitation: +0.50‰/°C (r² = 0.83; p < 0.01; n = 55) for δ¹⁸O and +3.8‰/°C (r² = 0.83, p < 0.01; n = 55) for δD. Secondary fractionation processes (e.g., contribution of recycled moisture) were identified mainly in summer from low d excess. Backward trajectories assessed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicate that precipitation with the lowest mean δ¹⁸O and δD values reaches Irkutsk in winter related to moisture transport from the Arctic. Precipitation originating from the west/southwest with the heaviest mean isotope composition reaches Irkutsk in summer, thus representing moisture transport across Eurasia. Generally, moisture transport from the west, that is, the Atlantic Ocean predominates throughout the year. A comparison of our new isotope dataset with simulation results using the European Centre/Hamburg version 5 (ECHAM5)-wiso climate model reveals a good agreement of variations in δ¹⁸O (r² = 0.87; p < 0.01; n = 55) and air temperature (r² = 0.99; p < 0.01; n = 71). However, the ECHAM5-wiso model fails to capture observed variations in d excess (r² = 0.14; p < 0.01; n = 55). This disagreement can be partly explained by a model deficit of capturing regional hydrological processes associated with secondary moisture supply in summer.
Latitude: 52.300000 * Longitude: 104.283300
Date/Time Start: 2011-06-24T00:00:00 * Date/Time End: 2017-04-04T00:00:00
Minimum Elevation: 469.0 m * Maximum Elevation: 469.0 m
Irkutsk_prec * Latitude: 52.300000 * Longitude: 104.283300 * Date/Time Start: 2011-06-24T00:00:00 * Date/Time End: 2017-04-04T00:00:00 * Elevation: 469.0 m * Location: Irkutsk, Russia * Method/Device: Water sample (WS)
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Sample code/labelSample labelKostrova, Svetlana S
2DATE/TIMEDate/TimeKostrova, Svetlana SGeocode
3Sample typeSamp typeKostrova, Svetlana S
4δ18O, waterδ18O H2O‰ SMOWKostrova, Svetlana S
5δ Deuterium, waterδD H2O‰ SMOWKostrova, Svetlana S
6Deuterium excessd xsKostrova, Svetlana S
1420 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML