Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Sosdian, Sindia M; Greenop, Rosanna; Hain, Mathis P; Foster, Gavin L; Pearson, Paul N; Lear, Caroline H (2019): Records of Neogene ocean carbonate chemistry using the boron isotope pH proxy [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.904186, Supplement to: Sosdian, SM et al. (2018): Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth and Planetary Science Letters, 498, 362-376, https://doi.org/10.1016/j.epsl.2018.06.017

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Over the course of the Neogene, the Earth underwent profound climatic shifts from the sustained warmth of the middle Miocene to the development of Plio-Pleistocene glacial-interglacial cycles. Major perturbations in the global carbon cycle have occurred alongside these shifts, however the lack of long- term carbonate system reconstructions currently limits our understanding of the link between changes in CO2, carbon cycling, and climate over this time interval. Here we reconstruct continuous surface ocean pH, CO2, and surface ocean aragonite saturation state using boron isotopes from the planktonic foraminifer Trilobatus trilobus and we perform a sensitivity analysis of the key variables in our calculations (e.g. δ11Bsw, [Ca]sw, CCD). We show that the choice of δ11Bsw influences both seawater pH and CO2 while [Ca]sw reconstructed dissolved inorganic carbon exerts a significant influence only on CO2. Over the last 22 Myr, the lowest pH levels occurred in the Middle Miocene Climate Optimum (MMCO; 17-14 Myr ago) reaching ∼7.6 ± 0.1 units in all our scenarios. The extended warmth of the MMCO corresponds to mean CO2 and aragonite saturation state levels of 470-630 ppm and 2.7-3.5, respectively. Despite a general correspondence between our CO2 record and climate, all CO2 scenarios show a peak at ∼9 Ma not matched by corresponding changes in climate reconstructions. This may suggest decoupling (i.e. significant CO2 change without a discernible climate response) for a limited interval in the Late Miocene (11.6-8.5 Ma), although further refinement of our understanding of the temporal evolution of the boron isotopic composition of seawater is necessary to fully evaluate the nature of the relationship between CO2 and climate. Nonetheless, from our long-term view it is clear that low-latitude open ocean marine ecosystems are unlikely to have experienced sustained surface pH and saturation levels below 7.7 and 1.7, respectively, during the past 14 million years (66% CI).
Keyword(s):
boron isotopes; carbonate system; Foraminifera; Miocene; Neogene
Related to:
Badger, Marcus P S; Lear, Caroline H; Pancost, Richard D; Foster, Gavin L; Bailey, Trevor R; Leng, Melanie J; Abels, Hemmo A (2013): CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. Paleoceanography, 28(1), 42-53, https://doi.org/10.1002/palo.20015
Bartoli, Gretta; Hönisch, Bärbel; Zeebe, Richard E (2011): Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography, 26(4), PA4213, https://doi.org/10.1029/2010PA002055
Chalk, Thomas B; Hain, Mathis P; Foster, Gavin L; Rohling, Eelco J; Sexton, Philip F; Badger, Marcus P S; Cherry, Soraya G; Hasenfratz, Adam P; Haug, Gerald H; Jaccard, Samuel L; Martínez‐García, Alfredo; Pälike, Heiko; Pancost, Richard D; Wilson, Paul A (2017): Causes of ice age intensification across the Mid-Pleistocene Transition. Proceedings of the National Academy of Sciences, 114(50), 13114-13119, https://doi.org/10.1073/pnas.1702143114
Foster, Gavin L; Lear, Caroline H; Rae, James W B (2012): The evolution of pCO2, ice volume and climate during the middle Miocene. Earth and Planetary Science Letters, 341-344, 243-254, https://doi.org/10.1016/j.epsl.2012.06.007
Greenop, Rosanna; Foster, Gavin L; Wilson, Paul A; Lear, Caroline H (2014): Middle Miocene climate instability associated with high‐amplitude CO2 variability. Paleoceanography, 29(9), 845-853, https://doi.org/10.1002/2014PA002653
Greenop, Rosanna; Hain, Mathis P; Sosdian, Sindia M; Oliver, Kevin I C; Goodwin, Philip; Chalk, Thomas B; Lear, Caroline H; Wilson, Paul A; Foster, Gavin L (2017): A record of Neogene seawate d11B reconstructed from paired d11B analyses on benthic and planktic foraminifera. Climate of the Past, 13(2), 149-170, https://doi.org/10.5194/cp-13-149-2017
Hönisch, Bärbel; Hemming, N Gary; Archer, David E; Siddall, Mark; McManus, Jerry F (2009): Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition. Science, 324(5934), 1551-1554, https://doi.org/10.1126/science.1171477
Horita, Juske; Zimmermann, Heide; Holland, Heinrich D (2002): Chemical evolution of seawater during the Phanerozoic. Geochimica et Cosmochimica Acta, 66(21), 3733-3756, https://doi.org/10.1016/S0016-7037(01)00884-5
Lemarchand, Damien; Gaillardet, Jérôme; Lewin, E; Allègre, Claude J (2002): Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chemical Geology, 190(1-4), 123-140, https://doi.org/10.1016/S0009-2541(02)00114-6
Martínez-Botí, Miquel Àngel; Foster, Gavin L; Chalk, Thomas B; Rohling, Eelco J; Sexton, Philip F; Lunt, Daniel J; Pancost, Richard D; Badger, Marcus P S; Schmidt, Daniela N (2015): Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature, 518(7537), 49-54, https://doi.org/10.1038/nature14145
Pälike, Heiko; Lyle, Mitchell W; Nishi, Hiroshi; Raffi, Isabella; Ridgwell, Andy; Gamage, Kusali; Klaus, Adam; Acton, Gary D; Anderson, Louise; Backman, Jan; Baldauf, Jack G; Beltran, Catherine; Bohaty, Steven M; Bown, Paul R; Busch, William H; Channell, James E T; Chun, Cecily O J; Delaney, Margaret Lois; Dewang, Pawan; Dunkley Jones, Tom; Edgar, Kirsty M; Evans, Helen F; Fitch, Peter; Foster, Gavin L; Gussone, Nikolaus; Hasegawa, Hitoshi; Hathorne, Ed C; Hayashi, Hiroki; Herrle, Jens O; Holbourn, Ann E; Hovan, Steven A; Hyeong, Kiseong; Iijima, Koichi; Ito, Takashi; Kamikuri, Shin-Ichi; Kimoto, Katsunori; Kuroda, Junichiro; Leon-Rodriguez, Lizette; Malinverno, Alberto; Moore, Theodore C; Murphy, Brandon; Murphy, Daniel P; Nakamur, Hideto; Ogane, Kaoru; Ohneiser, Christian; Richter, Carl; Robinson, Rebecca S; Rohling, Eelco J; Romero, Oscar E; Sawada, Ken; Scher, Howie D; Schneider, Leah; Sluijs, Appy; Takata, Hiroyuki; Tian, Jun; Tsujimoto, Akira; Wade, Bridget S; Westerhold, Thomas; Wilkens, Roy H; Williams, Trevor J; Wilson, Paul A; Yamamoto, Yuhji; Yamamoto, Shinya; Yamazaki, Toshitsugu; Zeebe, Richard E (2012): A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 488, 609-614, https://doi.org/10.1038/nature11360
Seki, Osamu; Foster, Gavin L; Schmidt, Daniela N; Mackensen, Andreas; Kawamura, Kimitaka; Pancost, Richard D (2010): Alkenone and boron based Pliocene pCO2 records. Earth and Planetary Science Letters, 292(1-2), 201-211, https://doi.org/10.1016/j.epsl.2010.01.037
Coverage:
Median Latitude: -1.530627 * Median Longitude: -141.717772 * South-bound Latitude: -16.737000 * West-bound Longitude: 115.535000 * North-bound Latitude: 16.553700 * East-bound Longitude: -20.927000
Date/Time Start: 1986-04-13T00:00:00 * Date/Time End: 1996-02-02T22:30:00
Size:
4 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: