Not logged in
Data Publisher for Earth & Environmental Science

Tapia, Raúl; Nürnberg, Dirk; Ho, Sze Ling; Lamy, Frank; Ullermann, Johannes; Gersonde, Rainer; Tiedemann, Ralf (2019): Mg/Ca and isotopic data of sediment core PS75/059-2. PANGAEA,, Supplement to: Tapia, R et al. (2019): Glacial differences of Southern Ocean Intermediate Waters in the Central South Pacific. Quaternary Science Reviews, 208, 105-117,

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Southern Ocean Intermediate Waters (SOIWs), such as Antarctic Intermediate Water and Subantarctic Mode Water, play a key role in modulating the global climate on glacial-interglacial time scales. They link the Southern Ocean and the tropics via mechanisms such as "oceanic tunneling" that transport climatic signals across latitudes. Despite their importance, the past evolution of the SOIWs in the Central South Pacific is largely unknown. Here we compare paired Mg/Ca-temperature, stable carbon (δ13C) and oxygen (δ18O) isotope records from surface-dwelling and deep-dwelling planktic foraminifera to infer changes in the water column structure for the last 260 ka in the Central South Pacific (54° S). Our study focuses on the subsurface oceanographic variability controlled by SOIWs, which are subducted at the Subantarctic Front.
Our data show that the subsurface ocean in the Central South Pacific was colder and fresher during glacial stages than during the Holocene (0-10 ka BP), suggesting a general glacial enhanced presence of Antarctic Intermediate Water, in agreement with previous studies from the Eastern Equatorial Pacific and the Southeast Pacific. However, the subsurface ocean salinity differs for both glacial stages, with fresher condition during the Last Glacial Maximum (LGM; ∼26.5-19 ka BP) and more saline condition during the Penultimate Glacial Maximum (PGM; ∼155-140 ka BP). The δ13C data also show contrasting conditions for both glacial time windows in the upper water column, with a large depletion of 0.37‰ in δ13C from the LGM values, suggests a larger contribution of "old" low δ13C deep waters at intermediate depths at the study site during the PGM, plausibly due to stronger upwelling in high southern latitudes. The dissimilar scenarios between the LGM and the PGM may have been caused by processes that are analogous to the phase-switch in modern day Southern Annular Mode.
Intermediate water masses; Last Glacial Maximum; Mg/Ca; Penultimate Glacial Maximum; planktic foraminifera; Southern Ocean; Stable isotopes
Latitude: -54.215000 * Longitude: -125.425500
Date/Time Start: 2009-12-18T02:30:00 * Date/Time End: 2009-12-18T02:30:00
Minimum Elevation: -3613.0 m * Maximum Elevation: -3613.0 m
PS75/059-2 * Latitude: -54.215000 * Longitude: -125.425500 * Date/Time: 2009-12-18T02:30:00 * Elevation: -3613.0 m * Recovery: 13.98 m * Location: South Pacific Ocean * Campaign: ANT-XXVI/2 (PS75 BIPOMAC) * Basis: Polarstern * Method/Device: Piston corer (BGR type) (KL) * Comment: Modern water mass: LCDW
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1AGEAgeka BPTapia, RaúlGeocode
2Sea surface temperatureSST°CTapia, Raúlcalculated from G.bulloides Mg/Ca
3Globigerina bulloides, δ18OG. bulloides δ18O‰ PDBTapia, Raúl
4Globigerina bulloides, δ13CG. bulloides δ13C‰ PDBTapia, Raúl
5Subsurface temperatureSubT°CTapia, Raúlcalculated from G.inflata Mg/Ca
6Globorotalia inflata, δ18OG. inflata δ18O‰ PDBTapia, Raúl
7Globorotalia inflata, δ13CG. inflata δ13C‰ PDBTapia, Raúl
862 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML