Not, C; Thibodeau, B; Yokoyama, Yusuke (2018): Seawater carbonate chemistry and incorporation of Mg, Sr, Ba, U, and B in High-Mg Calcite Benthic Foraminifers [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.891206, Supplement to: Not, C et al. (2018): Incorporation of Mg, Sr, Ba, U, and B in High-Mg Calcite Benthic Foraminifers Cultured Under Controlled pCO2. Geochemistry, Geophysics, Geosystems, 19(1), 83-98, https://doi.org/10.1002/2017GC007225
Always quote citation above when using data! You can download the citation in several formats below.
Published: 2018-06-19 • DOI registered: 2018-07-25
Abstract:
Measurement of elemental ratios (E/Ca) have been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing pre-industrial, modern and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U and B incorporation could be controlled by Rayleigh fractionation. However, more data is needed to validate and quantify the relative importance this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multi-elemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca and B/Ca is sensitive to bottom water pCO2 or pH in these species.
Keyword(s):
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Proye, Aurélien; Soetaert, Karline; Rae, James (2016): seacarb: seawater carbonate chemistry with R. R package version 3.1. https://cran.r-project.org/package=seacarb
Project(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2018-05-23.
Parameter(s):
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
390 data points