Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Alfiansah, Yustian; Hassenrück, Christiane; Kunzmann, Andreas; Taslihan, Arief; Harder, Jens; Gärdes, Astrid (2018): Bacterial abundances and chemical water analysis from shrimp farming systems in Indonesia [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.889316, Supplement to: Alfiansah, Y et al. (2018): Bacterial Abundance and Community Composition in Pond Water From Shrimp Aquaculture Systems With Different Stocking Densities. Frontiers in Microbiology, 9, 2457, https://doi.org/10.3389/fmicb.2018.02457

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
In shrimp aquaculture, shrimp farming systems are carefully determined to avoid rearing failure due to stress, disease or mass mortality, and to achieve optimum shrimp production. Little is known about how shrimp farming systems affect environmental parameters and bacterial community in rearing water, whether high stocking densities (intensive system) will increase the abundance of pathogenic bacteria. Moreover, high content of suspended particulate matter in shrimp pond potentially load more bacteria, including pathogenic bacteria, which then can be used as a sentinel of the potential presence of pathogenic bacteria in shrimp farming. Therefore, water parameters and the abundances of cultivable heterotrophic bacteria, including potential pathogenic Vibrio, were measured in three ponds of moderate/semi-intensive (40 post-larvae m-3) and three of high density/intensive shrimp aquaculture (90 post-larvae m-3), at day 10, 20, 30, 40, 50, and 70 of rearing. Additionally, free-living and particle-attached bacterial communities in the pond water were analyzed via 16S amplicon sequencing. Among the observed environmental parameters, suspended particulate matters, salinity, chlorophyll a, pH and dissolved oxygen differed significantly between the intensive and semi-intensive systems. However, no significant difference was observed for inorganic nutrients, abundances of heterotrophic bacteria, and potential pathogenic Vibrio between two systems. Bacterial communities were dominated by Gammaproteobacteria, Alphaproteobacteria, Flavobacteria, Bacilli, and Actinobacteria. Operational taxonomic units (OTUs) of the genera Halomonas, Psychrobacter, and Salegentibacter were present in both systems, where they may be involved in nitrification and ammonium removal. Halomonas, Psychrobacter, and Vibrio were most abundant genera in the particle-attached fractions, while Salegentibacter, Sulfitobacter, and Halomonas were found in the free-living fractions of both systems. Furthermore, aggregates of intensive systems loaded more Vibrio than semi-intensive ones. Interestingly, when the sequence proportion of Halomonas or Psychrobacter decreased, the proportion of Vibrio increased. Redundancy analysis showed that among the observed environmental parameters, salinity was best suited to explain patterns in the composition of both free-living and particle-attached bacterial communities (R²: 15.32% and 12.81%, respectively). In conclusion, intensive systems affected water quality and increased prevalence of potentially pathogenic bacteria, although they did not seem to promote a more diverse bacterial community.
Related to:
Alfiansah, Yustian; Hassenrück, Christiane; Kunzmann, Andreas; Taslihan, Arief; Harder, Jens; Gärdes, Astrid (2018): Bacterial abundances, water parameters and bacterial community composition of shrimp pond water. European Nucleotide Archive (ENA), insdc:PRJEB26390
Coverage:
Median Latitude: -6.664644 * Median Longitude: 111.431629 * South-bound Latitude: -6.703112 * West-bound Longitude: 111.364940 * North-bound Latitude: -6.626177 * East-bound Longitude: 111.498318
Date/Time Start: 2016-09-16T00:00:00 * Date/Time End: 2016-11-20T00:00:00
Minimum DEPTH, water: m * Maximum DEPTH, water: m
Event(s):
Indonesia_Shrimp_Aquaculture-1 * Latitude: -6.626177 * Longitude: 111.498318 * Location: Indonesia * Method/Device: Experiment (EXP)
Indonesia_Shrimp_Aquaculture-2 * Latitude: -6.703112 * Longitude: 111.364940 * Location: Indonesia * Method/Device: Experiment (EXP)
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEventAlfiansah, Yustian
2Event labelEventAlfiansah, Yustian
3Latitude of eventLatitudeAlfiansah, Yustian
4Longitude of eventLongitudeAlfiansah, Yustian
5DATE/TIMEDate/TimeAlfiansah, YustianGeocode
6Sample IDSample IDAlfiansah, Yustian
7Sample commentSample commentAlfiansah, YustianShrimp farming system
8Duration, number of daysDurationdaysAlfiansah, YustianRearing time
9Uniform resource locator/link to referenceURL refAlfiansah, Yustian
10DescriptionDescriptionAlfiansah, Yustian
11DEPTH, waterDepth watermAlfiansah, YustianGeocode
12LocationLocationAlfiansah, Yustian
13EnvironmentEnvironmentAlfiansah, YustianBiome
14EnvironmentEnvironmentAlfiansah, YustianMaterial
15EnvironmentEnvironmentAlfiansah, YustianFeature
16Temperature, waterTemp°CAlfiansah, Yustian
17pHpHAlfiansah, Yustian
18SalinitySalAlfiansah, Yustian
19HydrodeoxygenationHDOmg/lAlfiansah, Yustian
20Chlorophyll aChl aµg/lAlfiansah, Yustian
21Turbidity (Nephelometric turbidity unit)TurbidityNTUAlfiansah, Yustian
22Suspended matter, particulate/solidsTSSmg/lAlfiansah, Yustian
23ProkaryotesProkaryotes#/mlAlfiansah, YustianFree-living
24ProkaryotesProkaryotes#/mlAlfiansah, YustianPracticle-attached
25Bacteria, heterotrophic, total cultivableTHB cultivablelog10 CFU/mlAlfiansah, Yustian
26Vibrio, potentially pathogen, total cultivableTPPV cultivablelog10 CFU/mlAlfiansah, Yustian
27Phosphate[PO4]3-mg/lAlfiansah, Yustian
28Nitrite[NO2]-mg/lAlfiansah, Yustian
29Nitrate[NO3]-mg/lAlfiansah, Yustian
30Ammonium[NH4]+mg/lAlfiansah, Yustian
31SiliconSimg/lAlfiansah, Yustian
32NameNameAlfiansah, YustianOf site
33SizeSizeµmAlfiansah, YustianOf pore
Size:
1620 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML