Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Yang, Yuling; Li, Wei; Li, Zhenzhen; Xu, Juntian (2018): Seawater carbonate chemistry and photosynthetic performance of Thalassiosira (Conticribra) weissflogii (Bacillariophyta) [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.888942, Supplement to: Yang, Y et al. (2018): Combined effects of ocean acidification and nutrient levels on the photosynthetic performance of Thalassiosira (Conticribra) weissflogii (Bacillariophyta). Phycologia, 57(2), 121-129, https://doi.org/10.2216/16-127.1

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
The purpose of this study was to investigate the effects of ocean acidification and nutrient level on the growth and photosynthetic performance of the diatom Thalassiosira (Conticribra) weissflogii. Cells were exposed to varying levels of CO2 [current CO2 (LC), 400 μatm; high CO2 (HC), 1000 μatm] and nutrients, with NO3− and PO43− concentrations enriched, respectively, at 50 μmol/l and 5 μmol/l [high nutrient (HN)], 20 μmol/l and 2 μmol/l [mid-level nutrient (MN)] and 10 μmol/l and 1 μmol/l [low nutrient (LN)]. After acclimatization for over 20 generations, no significant differences in growth rates were observed between LC and HC cultures under both HN and LN conditions; whereas, HC significantly reduced the growth rate under MN conditions. Lower nutrient loading significantly inhibited the growth rates of both LC and HC cultures; whereas, HC (but not LC) significantly decreased chlorophyll a and carotenoid contents in LN treatments. HC conditions significantly increased maximum relative electron transport rates (rETRmax) and saturating light intensity (Ik) of HN cultures, with rETRmax showing a positive relationship with growth rates stimulated by nutrient enrichments. The maximum (Fv/Fm) and effective quantum yield (Yield) were all inhibited under LN conditions, with the greatest reduction in Yield observed under LC conditions, corresponding to the highest nonphotochemical quenching, lowest light use efficiency (α) and lowest rETRmax. Based on these results, ocean acidification and nutrient availability may influence photosynthetic performance in T. weissflogii individually or interactively, with the future growth of marine diatoms mediated by these codependent environmental drivers.
Keyword(s):
Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Chromista; Growth/Morphology; Laboratory experiment; Laboratory strains; Macro-nutrients; Not applicable; Ochrophyta; Pelagos; Phytoplankton; Primary production/Photosynthesis; Single species; Thalassiosira weissflogii
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Proye, Aurélien; Soetaert, Karline; Rae, James (2016): seacarb: seawater carbonate chemistry with R. R package version 3.1. https://cran.r-project.org/package=seacarb
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2018-04-11.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1TypeTypeXu, Juntianstudy
2SpeciesSpeciesXu, Juntian
3Registration number of speciesReg spec noXu, Juntian
4Uniform resource locator/link to referenceURL refXu, JuntianWoRMS Aphia ID
5FigureFigXu, Juntian
6TreatmentTreatXu, Juntian
7Growth rateµ1/dayXu, Juntian
8Growth rate, standard deviationµ std dev±Xu, Juntian
9Chlorophyll a per cellChl a/cellpg/#Xu, Juntian
10Chlorophyll a, standard deviationChl a std dev±Xu, Juntian
11Carotenoids per cellCarotenoids/cellpg/#Xu, Juntian
12Carotenoids, standard deviationCarotenoids std dev±Xu, Juntian
13Carotenoids/Chlorophyll a ratioCarotenoids/Chl aXu, Juntian
14Carotenoids/Chlorophyll a ratio, standard deviationCarotenoids/Chl a std dev±Xu, Juntian
15Maximum photochemical quantum yield of photosystem IIFv/FmXu, Juntian
16Maximum photochemical quantum yield of photosystem II, standard deviationFv/Fm std dev±Xu, Juntian
17Effective quantum yieldYXu, Juntian
18Effective quantum yield, standard deviationY std dev±Xu, Juntian
19Non photochemical quenchingNPQXu, Juntian
20Non photochemical quenching, standard deviationNPQ std dev±Xu, Juntian
21IrradianceEµmol/m2/sXu, Juntian
22Electron transport rate, relativerETRµmol e/m2/sXu, Juntian
23Electron transport rate, relative, standard deviationrETR std dev±Xu, Juntian
24Maximal electron transport rate, relativerETR maxµmol e/m2/sXu, Juntian
25Electron transport rate, relative, standard deviationrETR std dev±Xu, Juntian
26Photosynthetic efficiencyFV/FMXu, Juntian
27Photosynthetic efficiency, standard deviationalpha std dev±Xu, Juntian
28Light saturation pointIkµmol/m2/sXu, Juntian
29Light saturation point, standard deviationIk std dev±Xu, Juntian
30SalinitySalXu, Juntian
31Temperature, waterTemp°CXu, Juntian
32SilicateSi(OH)4µmol/lXu, Juntian
33Nitrate[NO3]-µmol/lXu, Juntian
34Phosphate[PO4]3-µmol/lXu, Juntian
35pHpHXu, JuntianPotentiometricNBS scale
36pH, standard deviationpH std dev±Xu, JuntianPotentiometricNBS scale
37Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmXu, Juntian
38Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Xu, Juntian
39Alkalinity, totalATµmol/kgXu, JuntianCalculated using CO2SYS
40Alkalinity, total, standard deviationAT std dev±Xu, JuntianCalculated using CO2SYS
41Carbon, inorganic, dissolvedDICµmol/kgXu, JuntianCalculated using CO2SYS
42Carbon, inorganic, dissolved, standard deviationDIC std dev±Xu, JuntianCalculated using CO2SYS
43Bicarbonate ion[HCO3]-µmol/kgXu, JuntianCalculated using CO2SYS
44Bicarbonate ion, standard deviation[HCO3]- std dev±Xu, JuntianCalculated using CO2SYS
45Carbonate ion[CO3]2-µmol/kgXu, JuntianCalculated using CO2SYS
46Carbonate ion, standard deviation[CO3]2- std dev±Xu, JuntianCalculated using CO2SYS
47Carbon dioxideCO2µmol/kgXu, JuntianCalculated using CO2SYS
48Carbon dioxide, standard deviationCO2 std dev±Xu, JuntianCalculated using CO2SYS
49Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
50pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
51Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
52Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
53Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
54Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
55Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
56Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
57Alkalinity, totalATµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
58Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
59Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
2910 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)