Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Wündsch, Michael; Haberzettl, Torsten; Cawthra, Hayley C; Kirsten, Kelly L; Quick, Lynne J; Zabel, Matthias; Frenzel, Peter; Hahn, Annette; Baade, Jussi; Daut, Gerhard; Kasper, Thomas; Meadows, Michael E; Mäusbacher, Roland (2018): Holocene investigations of sediments from Eilandvlei [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.887884, Supplement to: Wündsch, M et al. (2018): Holocene environmental change along the southern Cape coast of South Africa - Insights from the Eilandvlei sediment record spanning the last 8.9 kyr. Global and Planetary Change, 163, 51-66, https://doi.org/10.1016/j.gloplacha.2018.02.002

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
This study investigates Holocene sediments from Eilandvlei, a coastal lake located within the Wilderness embayment at the southern Cape coast of South Africa. The evolution of the present estuarine/coastal lake system is reconstructed based on seismic data as well as a multi-proxy approach on a 30.5 m sediment core spanning the last ~8.9 kyr. Geochemical (Ca, TOC/S, Br/TOC) and micropalaeontological data (diatoms, foraminifera) reflect changes in the degree of marine influence at the core site. The embayment likely developed via distinct phases of connectivity to the Indian Ocean caused by sea level changes and dune progradation. Marine conditions prevailed at the core site from ~8900 to 4700 cal BP. The rapid sea level rise during the early Holocene caused the inundation of a palaeovalley that most likely had formed at lower sea levels during the Pleistocene. Towards the mid-Holocene the sea level exceeded its present height around ~7500 cal BP creating a marine embayment. At ~4700 cal BP, the embayment became distinctly more disconnected from the ocean turning into a lagoon system that persisted until ~1200 cal BP. Subsequently, the marine influence further decreased and the present estuarine/coastal lake system was established.
Grain size and geochemical data (Fe, Si/Al, chemical index of alteration (CIA)) further reflect changes in the deposition of terrigenous sediments at the core site. While the sedimentation of fine-grained (<16 µm), iron-rich and highly weathered material is linked to periods of increased river discharge and rainfall, high amounts of deposited quartz (31-250 µm, high Si/Al) point to relatively dry and/or windy conditions during which increased aeolian transport of dune sands occurred. The proxies indicate reduced river discharge and hence possibly drier climatic conditions than today from ~8900 to 7900 cal BP and ~6400 to 3000 cal BP. In contrast, the periods between ~7900-6400 cal BP and ~3000 cal BP-present were likely characterized by high river discharge and thus, generally more rainfall. The reconstructed palaeoclimatic variations are discussed within the context of e.g., shifts in the position of the Antarctic sea ice extent and the mid-latitude westerly wind belt as well as changes in the El Niño-Southern Oscillation (ENSO).
Funding:
Federal Ministry of Education and Research (BMBF), grant/award no. 03G0840A: Regional Archives for Integrated iNvestigations
Federal Ministry of Education and Research (BMBF), grant/award no. 03G0840B: Regional Archives for Integrated iNvestigations
Coverage:
Latitude: -33.995320 * Longitude: 22.640050
Date/Time Start: 2013-10-18T00:00:00 * Date/Time End: 2013-10-24T00:00:00
Size:
8 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: