Gottschalk, Julia; Hodell, David A; Skinner, Luke C; Crowhurst, Simon J; Jaccard, Samuel L; Charles, Christopher D (2018): Carbonate weight percentages, XRF Ca/Ti ratios and foraminifer δ¹⁸O records from TN057-21, TN057-10 and from ODP Site 1089 [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.887160, Supplement to: Gottschalk, J et al. (2018): Past carbonate preservation events in the deep Southeast Atlantic Ocean (Cape Basin) and their implications for Atlantic overturning dynamics and marine carbon cycling. Paleoceanography and Paleoclimatology, 33(6), 643-663, https://doi.org/10.1029/2018PA003353
Always quote citation above when using data! You can download the citation in several formats below.
Published: 2018-03-06 • DOI registered: 2018-04-04
Abstract:
Micropaleontological and geochemical analyses reveal distinct millennial-scale increases in carbonate preservation in the deep Southeast Atlantic (Cape Basin) during strong and prolonged Greenland interstadials that are superimposed on long-term (orbital-scale) changes in carbonate burial. These data suggest carbonate oversaturation of the deep Atlantic and a strengthened Atlantic Meridional Overturning Circulation (AMOC) during the most intense Greenland interstadials. However, proxy evidence from outside the Cape Basin indicate that AMOC changes also occurred during weaker and shorter Greenland interstadials. Here we revisit the link between AMOC dynamics and carbonate saturation in the deep Cape Basin over the last 400 kyr (sediment cores TN057-21, TN057-10 and ODP Site 1089) by reconstructing centennial changes in carbonate preservation using mm-scale X-ray fluorescence (XRF) scanning data. We observe close agreement between variations in XRF Ca/Ti, sedimentary carbonate content and foraminiferal shell fragmentation, reflecting a common control primarily through changing deep-water carbonate saturation. We suggest that the high-frequency (sub-orbital) component of the XRF Ca/Ti records indicates the fast and recurrent redistribution of carbonate ions in the Atlantic basin via the AMOC during both long/strong- and short/weak North Atlantic climate anomalies. In contrast, the low-frequency (orbital) XRF Ca/Ti component is interpreted to reflect slow adjustments through carbonate compensation, and/or changes in the deep-ocean respired carbon content. Our findings emphasize the recurrent influence of rapid AMOC variations on the marine carbonate system during past glacial periods, providing a mechanism for transferring the impacts of North Atlantic climate anomalies to the global carbon cycle via the Southern Ocean.
Project(s):
Ocean Drilling Program (ODP)
Coverage:
Median Latitude: -43.440532 * Median Longitude: 8.084256 * South-bound Latitude: -47.100000 * West-bound Longitude: 5.916700 * North-bound Latitude: -40.936100 * East-bound Longitude: 9.894100
Date/Time Start: 1997-12-19T00:00:00 * Date/Time End: 1997-12-24T03:15:00
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Size:
5 datasets
Download Data
Datasets listed in this publication series
- Gottschalk, J; Hodell, DA; Skinner, LC et al. (2018): Carbonate weight percentages and foraminifer δ¹⁸O records from ODP Site 177-1089. https://doi.org/10.1594/PANGAEA.887154
- Gottschalk, J; Hodell, DA; Skinner, LC et al. (2018): XRF Calcium/Titanium ratios from ODP Site 177-1089. https://doi.org/10.1594/PANGAEA.887155
- Gottschalk, J; Hodell, DA; Skinner, LC et al. (2018): Carbonate weight percentages and foraminifer δ¹⁸O records from core TN057-10. https://doi.org/10.1594/PANGAEA.887156
- Gottschalk, J; Hodell, DA; Skinner, LC et al. (2018): XRF Calcium/Titanium ratios from core TN057-10. https://doi.org/10.1594/PANGAEA.887158
- Gottschalk, J; Hodell, DA; Skinner, LC et al. (2018): XRF Calcium/Titanium ratios from core TN057-21. https://doi.org/10.1594/PANGAEA.887159