Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Drury, Anna Joy; Lee, Geoffrey P; Gray, William R; Lyle, Mitchell W; Westerhold, Thomas; Shevenell, Amelia E; John, Cédric M (2018): Deciphering the state of the late Miocene to early Pliocene equatorial Pacific. PANGAEA, https://doi.org/10.1594/PANGAEA.885041, Supplement to: Drury, AJ et al. (2018): Deciphering the state of the late Miocene to early Pliocene equatorial Pacific. Paleoceanography and Paleoclimatology, 33, 246-263, https://doi.org/10.1002/2017PA003245

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
The late Miocene-early Pliocene was a time of global cooling and the development of modern meridional thermal gradients. Equatorial Pacific sea surface conditions potentially played an important role in this global climate transition, but their evolution is poorly understood. Here, we present the first continuous late Miocene-early Pliocene (8.0-4.4 Ma) planktic foraminiferal stable isotope records from eastern equatorial Pacific Integrated Ocean Drilling Program Site U1338, with a new astrochronology spanning 8.0-3.5 Ma. Mg/Ca analyses on surface dwelling foraminifera Trilobatus sacculifer from carefully selected samples suggest mean sea-surface-temperatures (SSTs) are ~27.8±1.1°C (1 Sigma) between 6.4-5.5 Ma. The planktic foraminiferal d18O record implies a 2°C cooling between 7.2-6.1 Ma and an up to 3°C warming between 6.1-4.4 Ma, consistent with observed tropical alkenone paleo-SSTs. Diverging fine-fraction-to-foraminiferal d13C gradients likely suggest increased upwelling from 7.1-6.0 and 5.8-4.6 Ma, concurrent with the globally recognized late Miocene Biogenic Bloom. This study shows that both warm and asymmetric mean states occurred in the equatorial Pacific during the late Miocene-early Pliocene. Between 8.0-6.5 and 5.2-4.4 Ma, low east-west d18O and SST gradients and generally warm conditions prevailed. However, an asymmetric mean climate state developed between 6.5-5.7 Ma, with larger east-west d18O and SST gradients and eastern equatorial Pacific cooling. The asymmetric mean state suggests stronger trade winds developed, driven by increased meridional thermal gradients associated with global cooling and declining atmospheric pCO2 concentrations. These oscillations in equatorial Pacific mean state are reinforced by Antarctic cryosphere expansion and related changes in oceanic gateways (e.g., Central American Seaway/Indonesian Throughflow restriction).
Coverage:
Median Latitude: 2.839100 * Median Longitude: -119.278932 * South-bound Latitude: 2.507800 * West-bound Longitude: -123.206000 * North-bound Latitude: 3.833000 * East-bound Longitude: -117.969910
Size:
4 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text (use the following character encoding: )