Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Gao, Guang; Liu, Yameng; Li, Xinshu; Feng, Zhihua; Xu, Zhiguang; Wu, Hongyan; Xu, Juntian (2017): Seawater carbonate chemistry and copper toxicity in the green tide alga Ulva prolifera in laboratory experiment [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.875584, Supplement to: Gao, G et al. (2017): Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera. Environmental and Experimental Botany, 135, 63-72, https://doi.org/10.1016/j.envexpbot.2016.12.007

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Cu is considered to be toxic to macroalgae at higher levels. Ocean acidification can also alter the physiological performances of macroalgae. However, little is known regarding the interactive effects of Cu and ocean acidification on macroalgae. In this study, a green tide macroalga, Ulva prolifera, was cultured at the conditions of three levels of Cu (control, 0.5 µM, and 2 µM) and pCO2 (ambient, 1000 µatm, and 1400 µatm) to investigate the responses of U. prolifera to interaction of Cu exposure and ocean acidification. The relative growth rate of thalli decreased with the rise of Cu for all pCO2 conditions except the 1000 ?atm pCO2. Compared with the control, 2 µM Cu reduced the net photosynthetic rate for all pCO2 conditions while 0.5 µM Cu only reduced it at 1400 µatm pCO2. The inhibition rate of Cu on the relative growth rate and net photosynthetic rate was reduced at 1000 µatm pCO2 but was magnified at 1400 ?atm pCO2. Contrary to growth, the dark respiration rate was enhanced by 0.5 µM Cu at ambient pCO2 and by 2 µM Cu at ambient and 1000 µatm pCO2, although it was reduced by 2 µM Cu at 1400 µatm pCO2 compared to the control. The 0.5 µM Cu did not affect the relative electron transport rate (rETR) for any pCO2 condition but 2 µM Cu decreased it for all pCO2 conditions except 1000 µatm pCO2. The mute effect of 0.5 µM Cu on the net photosynthetic rate and rETR at ambient pCO2 may be due to more Chl a and Chl b being synthesized. In addition, 2 µM Cu and 1400 µatm pCO2 led to branched thalli, which may be a defense mechanism against the stress of high Cu and pCO2. Our data, for the first time, demonstrate that a modest increase of pCO2 can alleviate the toxicity of Cu to U. prolifera whilst a further increase exacerbates it. U. prolifera can respond to the stress of Cu pollution and ocean acidification via physiological and morphological alterations.
Keyword(s):
Benthos; Bottles or small containers/Aquaria (<20 L); Chlorophyta; Coast and continental shelf; Growth/Morphology; Inorganic toxins; Laboratory experiment; Macroalgae; North Pacific; Plantae; Primary production/Photosynthesis; Respiration; Single species; Temperate; Ulva prolifera
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Proye, Aurélien; Soetaert, Karline; Rae, James (2016): seacarb: seawater carbonate chemistry with R. R package version 3.1. https://cran.r-project.org/package=seacarb
Coverage:
Latitude: 34.500000 * Longitude: 119.300000
Date/Time Start: 2009-07-01T00:00:00 * Date/Time End: 2009-07-30T00:00:00
Event(s):
Lianyungang_OA * Latitude: 34.500000 * Longitude: 119.300000 * Date/Time Start: 2009-07-01T00:00:00 * Date/Time End: 2009-07-30T00:00:00 * Method/Device: Experiment (EXP)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2017-05-17.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1TypeTypeXu, Juntianstudy
2SpeciesSpeciesXu, Juntian
3Registration number of speciesReg spec noXu, Juntian
4Uniform resource locator/link to referenceURL refXu, JuntianWoRMS Aphia ID
5Experiment durationExp durationdaysXu, Juntian
6TreatmentTreatXu, Juntian
7TreatmentTreatXu, Juntian
8GrowthGrowth%Xu, Juntian
9Growth rate, standard deviationµ std dev±Xu, Juntian
10Growth inhibitionGrowth inhib%Xu, Juntianinhibition rate of Cu
11Growth inhibition, standard deviationGrowth inhib std dev±Xu, Juntianinhibition rate of Cu
12Net photosynthesis rate, oxygenPN O2µmol/g/hXu, Juntian
13Net photosynthesis rate, standard deviationPN std dev±Xu, Juntian
14Inhibition of net photosynthesisInhib NP%Xu, Juntianinhibition rate of Cu
15Inhibition of net photosynthesis, standard deviationInhib NP std dev±Xu, Juntianinhibition rate of Cu
16Respiration rate, oxygenResp O2µmol/g/hXu, Juntiandark
17Respiration rate, oxygen, standard deviationResp O2 std dev±Xu, Juntiandark
18Electron transport rate, relativerETRµmol e/m2/sXu, Juntian
19Electron transport rate, relative, standard deviationrETR std dev±Xu, Juntian
20Non photochemical quenchingNPQXu, Juntian
21Non photochemical quenching, standard deviationNPQ std dev±Xu, Juntian
22IrradianceEµmol/m2/sXu, Juntian
23Electron transport rate efficiencyalphaXu, Juntian
24Electron transport rate efficiency, standard deviationalpha std dev±Xu, Juntian
25Maximal electron transport rate, relativerETR maxµmol e/m2/sXu, Juntian
26Maximal electron transport rate, relative, standard deviationrETR max std dev±Xu, Juntian
27Light saturationEkµmol/m2/sXu, Juntian
28Light saturation, standard deviationEk std dev±Xu, Juntian
29Chlorophyll aChl aµg/gXu, Juntian
30Chlorophyll a, standard deviationChl a std dev±Xu, Juntian
31Chlorophyll bChl bµg/gXu, Juntian
32Chlorophyll b, standard deviationChl b std dev±Xu, Juntian
33CarotenoidsCarotenoidsµg/gXu, Juntian
34Carotenoids, standard deviationCarotenoids std dev±Xu, Juntian
35SalinitySalXu, Juntian
36Temperature, waterTemp°CXu, Juntian
37pHpHXu, JuntianPotentiometricNBS scale
38pH, standard deviationpH std dev±Xu, JuntianPotentiometricNBS scale
39Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmXu, JuntianCalculated using CO2SYS
40Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Xu, JuntianCalculated using CO2SYS
41Carbon, inorganic, dissolvedDICµmol/kgXu, JuntianCalculated using CO2SYS
42Carbon, inorganic, dissolved, standard deviationDIC std dev±Xu, JuntianCalculated using CO2SYS
43Bicarbonate ion[HCO3]-µmol/kgXu, JuntianCalculated using CO2SYS
44Bicarbonate ion, standard deviation[HCO3]- std dev±Xu, JuntianCalculated using CO2SYS
45Carbonate ion[CO3]2-µmol/kgXu, JuntianCalculated using CO2SYS
46Carbonate ion, standard deviation[CO3]2- std dev±Xu, JuntianCalculated using CO2SYS
47Carbon dioxideCO2µmol/kgXu, JuntianCalculated using CO2SYS
48Carbon dioxide, standard deviationCO2 std dev±Xu, JuntianCalculated using CO2SYS
49Alkalinity, totalATµmol/kgXu, JuntianPotentiometric titration
50Alkalinity, total, standard deviationAT std dev±Xu, JuntianPotentiometric titration
51Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
52pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
53Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
54Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
55Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
56Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
57Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
58Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
59Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
60Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
3435 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)