Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Villarino, Ernesto; Watson, James R; Jönsson, Bror; Gasol, Josep M; Salazar, Guillem; Acinas, Silvia G; Estrada, Marta; Massana, Ramón; Logares, Ramiro; Giner, Caterina R; Pernice, Massimo C; Olivar, M Pilar; Citores, Leire; Corell, Jon; Rodríguez-Ezpeleta, Naiara; Acuña, José Luis; Molina-Ramírez, Axayacatl; González-Gordillo, Juan Ignacio; Cózar, Andrés; Martí, Elisa; Cuesta, José A; Agustí, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos Manuel; Irigoien, Xabier; Chust, Guillem (2017): Large-scale ocean connectivity and planktonic body size [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.874689, Supplement to: Villarino, E et al. (2018): Large-scale ocean connectivity and planktonic body size. Nature Communications, 9(1), https://doi.org/10.1038/s41467-017-02535-8

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size plays in determining spatial patterns of diversity remains unclear. Here, we analyze spatial community structure - beta-diversity - for several planktonic and nektonic organisms spanning from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. beta-diversity were compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body-size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger spatial species-turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.
Project(s):
Funding:
Spanish Ministry of Science, Innovation and Universities (MICINN), grant/award no. CSD2008-00077: Circumnavigation expedition Malaspina 2010: Global Change and Exploration of Biodiversity of the Global Ocean
Coverage:
Median Latitude: -13.282992 * Median Longitude: 12.591514 * South-bound Latitude: -40.550500 * West-bound Longitude: -179.521670 * North-bound Latitude: 35.139830 * East-bound Longitude: 176.004170
Date/Time Start: 2010-12-16T06:21:00 * Date/Time End: 2011-07-11T05:12:00
Size:
12 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding:

Datasets listed in this publication series

  1. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Epipelagic coccolithophores in the global oceans. https://doi.org/10.1594/PANGAEA.874646
  2. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Epipelagic diatoms in the global oceans. https://doi.org/10.1594/PANGAEA.874647
  3. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Epipelagic dinoflagellates in the global oceans. https://doi.org/10.1594/PANGAEA.874650
  4. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Neuston gelatinous zooplankton in the global oceans. https://doi.org/10.1594/PANGAEA.874651
  5. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Neuston macrozooplankton in the global oceans. https://doi.org/10.1594/PANGAEA.874652
  6. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Epipelagic mesozooplankton in the global oceans, part 1. https://doi.org/10.1594/PANGAEA.874658
  7. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Epipelagic mesozooplankton in the global oceans, part 2. https://doi.org/10.1594/PANGAEA.874732
  8. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Epipelagic mesozooplankton in the global oceans, part 3. https://doi.org/10.1594/PANGAEA.874742
  9. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Epipelagic mesozooplankton in the global oceans, part 4. https://doi.org/10.1594/PANGAEA.874779
  10. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Epipelagic microbial eukaryotes in the global oceans. https://doi.org/10.1594/PANGAEA.874782
  11. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Neuston myctophids in the global oceans. https://doi.org/10.1594/PANGAEA.874653
  12. Villarino, E; Watson, JR; Jönsson, B et al. (2017): Epipelagic prokaryotes in the global oceans. https://doi.org/10.1594/PANGAEA.874654