Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Tegzes, Andrea D; Jansen, Eystein; Telford, Richard J (2015): Early-Holocene (9,500-7,500 years BP) and late-Holocene (4,200 years BP to present) sortable-silt records from box core JM97-948/2A and IMAGES piston core MD95-2011 from the mid-Norwegian Margin [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.873991, Supplement to: Tegzes, AD et al. (2015): Which is the better proxy for paleo-current strength: Sortable-silt mean size (SS) or sortable-silt mean grain diameter (dSS)? A case study from the Nordic Seas. Geochemistry, Geophysics, Geosystems, 16(10), 3456-3471, https://doi.org/10.1002/2014GC005655

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
The coarseness of the 10-63 µm terrigenous silt (i.e., sortable-silt) fraction tends to vary independently of sediment supply in current-sorted muds in the world's oceans, with coarser sediments representing relatively greater near-bottom flow speeds. Traditionally, the coarseness of this size fraction is described using an index called sortable-silt mean size (SS), which is an arithmetic average calculated from the differential volume or mass distribution of grains within the 10-63 µm terrigenous silt fraction, where the relative weights of the individual size bins become increasingly disproportionate, with respect to the actual number of grains within those size bins, toward the coarse end of the size range. This not only increases the absolute value of the apparent "mean size" within the 10-63 µm terrigenous silt fraction, but it may also affect the apparent pattern of relative changes in the coarseness of the sortable-silt fraction along the core. In addition, it makes SS more prone to biases due to, for example, analytical errors. Here we present a detailed analysis of grain-size distributions over three selected Holocene time intervals from two complementary sediment cores (JM97-948/2A and MD95-2011), extracted from the center of a high-accumulation area along the flow path of the main branch of the Atlantic Inflow into the Nordic Seas and show that differential-number-based statistics, which likely better describes variations in the actual coarseness of the sortable-silt fraction, may provide a more robust alternative to SS.
Related to:
Tegzes, Andrea D; Jansen, Eystein; Lorentzen, Torbjørn; Telford, Richard J (2017): Northward oceanic heat transport in the main branch of the Norwegian Atlantic Current over the late Holocene. The Holocene, https://doi.org/10.1177/0959683616683251
Tegzes, Andrea D; Jansen, Eystein; Telford, Richard J (2014): The role of the northward-directed (sub)surface limb of the Atlantic Meridional Overturning Circulation during the 8.2 ka event. Climate of the Past, 10, 1887-1904, https://doi.org/10.5194/cp-10-1887-2014
Coverage:
Median Latitude: 66.969681 * Median Longitude: 7.639330 * South-bound Latitude: 66.969660 * West-bound Longitude: 7.639330 * North-bound Latitude: 66.969830 * East-bound Longitude: 7.639330
Date/Time Start: 1995-06-08T00:00:00 * Date/Time End: 1995-06-08T00:00:00
Size:
23 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding:

Datasets listed in this publication series

  1. Tegzes, AD; Jansen, E; Telford, RJ (2015): 06. Radiocarbon ages for sediment cores JM97-948/2A and MD95-201. https://doi.org/10.1594/PANGAEA.873987
  2. Tegzes, AD; Jansen, E; Telford, RJ (2015): 05. Pb-210 dates for sediment core JM97-948/2A. https://doi.org/10.1594/PANGAEA.873988
  3. Tegzes, AD; Jansen, E; Telford, RJ (2015): 02. Sortable-silt-mean-grain-diameter time series from sediment cores JM97-948/2A and MD95-2011. https://doi.org/10.1594/PANGAEA.873990
  4. Tegzes, AD; Jansen, E; Telford, RJ (2015): 01. Sortable-silt-mean-size time series from sediment cores JM97-948/2A and MD95-2011. https://doi.org/10.1594/PANGAEA.873989
  5. Tegzes, AD; Jansen, E; Telford, RJ (2015): 03. Age model for sediment core JM97-948/2A. https://doi.org/10.1594/PANGAEA.873710
  6. Tegzes, AD; Jansen, E; Telford, RJ (2015): 04. Age model for sediment core MD95-2011. https://doi.org/10.1594/PANGAEA.873711
  7. Tegzes, AD; Jansen, E; Telford, RJ (2015): 07. (Fig. 3) The differential number and the differential volume distribution of grains within the same early-Holocene sample (533-534cm) from sediment core MD95-2011. https://doi.org/10.1594/PANGAEA.874005
  8. Tegzes, AD; Jansen, E; Telford, RJ (2015): 08. (Fig. 5A-B) The characteristic differential number and differential volume distribution of grains over the interval 9,500-7,500 years BP in sediment core MD95-2011. https://doi.org/10.1594/PANGAEA.874011
  9. Tegzes, AD; Jansen, E; Telford, RJ (2015): 09. (Fig. 5C-D) Enrichment of grains with d >15µm, >20µm, etc., to total sortable-silt (10-63µm) fraction over the interval 9,500-7,500 years BP in sediment core MD95-2011. https://doi.org/10.1594/PANGAEA.874014
  10. Tegzes, AD; Jansen, E; Telford, RJ (2015): 10. (Fig. 6A-B) The characteristic differential number and differential volume distribution of grains over the interval 2,050-1,550 years BP in sediment core MD95-2011. https://doi.org/10.1594/PANGAEA.874012
  11. Tegzes, AD; Jansen, E; Telford, RJ (2015): 11. (Fig. 6C-D) Enrichment of grains with d >15µm, >20µm, etc., to total sortable-silt (10-63µm) fraction over the interval 2,050-1,550 years BP in sediment core MD95-2011. https://doi.org/10.1594/PANGAEA.874016
  12. Tegzes, AD; Jansen, E; Telford, RJ (2015): 12. (Fig. 7A-B) The characteristic differential number and differential volume distribution of grains over the interval 1,050-550 years BP in sediment core MD95-2011. https://doi.org/10.1594/PANGAEA.874013
  13. Tegzes, AD; Jansen, E; Telford, RJ (2015): 13. (Fig. 7C-D) Enrichment of grains with d >15µm, >20µm, etc., to total sortable-silt (10-63µm) fraction over the interval 1,050-550 years BP in sediment core MD95-2011. https://doi.org/10.1594/PANGAEA.874018
  14. Tegzes, AD; Jansen, E; Telford, RJ (2015): 14. (Fig. 8, Tab. 1) The impact of increasing the stirrer speed on grain-size distributions. Sediment core MD95-2011: the number percent of grains with d>50 µm. https://doi.org/10.1594/PANGAEA.874021
  15. Tegzes, AD; Jansen, E; Telford, RJ (2015): 15. (Fig. 8, Tab. 2) The impact of increasing the stirrer speed on grain-size distributions. Sediment core MD95-2011: the number percent of grains with d>45 µm. https://doi.org/10.1594/PANGAEA.874025
  16. Tegzes, AD; Jansen, E; Telford, RJ (2015): 16. (Fig. 8, Tab. 3) The impact of increasing the stirrer speed on grain-size distributions. Sediment core MD95-2011: the number percent of grains with d>40 µm. https://doi.org/10.1594/PANGAEA.874026
  17. Tegzes, AD; Jansen, E; Telford, RJ (2015): 17. (Fig. 8, Tab. 4) The impact of increasing the stirrer speed on grain-size distributions. Sediment core MD95-2011: the number percent of grains with d>35 µm. https://doi.org/10.1594/PANGAEA.874027
  18. Tegzes, AD; Jansen, E; Telford, RJ (2015): 18. (Fig. 8, Tab. 5) The impact of increasing the stirrer speed on grain-size distributions. Sediment core MD95-2011: the number percent of grains with d>30 µm. https://doi.org/10.1594/PANGAEA.874028
  19. Tegzes, AD; Jansen, E; Telford, RJ (2015): 19. (Fig. 8, Tab. 6) The impact of increasing the stirrer speed on grain-size distributions. Sediment core MD95-2011: the number percent of grains with d>25 µm. https://doi.org/10.1594/PANGAEA.874029
  20. Tegzes, AD; Jansen, E; Telford, RJ (2015): 20. (Fig. 8, Tab. 7) The impact of increasing the stirrer speed on grain-size distributions. Sediment core MD95-2011: the number percent of grains with d>20 µm. https://doi.org/10.1594/PANGAEA.874030
  21. Tegzes, AD; Jansen, E; Telford, RJ (2015): 21. (Fig. 8, Tab. 8) The impact of increasing the stirrer speed on grain-size distributions. Sediment core MD95-2011: the number percent of grains with d>15 µm. https://doi.org/10.1594/PANGAEA.874031
  22. Tegzes, AD; Jansen, E; Telford, RJ (2015): 22. (Fig. 10, Panels 1A-B) The bias introduced by using a differential-volume-weighted arithmetic average instead of differential-number-based statistics. Sediment core MD95-2011: interval 9,500-7,500 years BP. https://doi.org/10.1594/PANGAEA.874032
  23. Tegzes, AD; Jansen, E; Telford, RJ (2015): 23. (Fig. 10, Panels 2A-B) The bias introduced by using a differential-volume-weighted arithmetic average instead of differential-number-based statistics. Sediment core MD95-2011: interval 1,050-550 years BP. https://doi.org/10.1594/PANGAEA.874237