Not logged in
Data Publisher for Earth & Environmental Science

Losa, Svetlana N; Soppa, Mariana A; Dinter, Tilman; Wolanin, Aleksandra; Brewin, Robert J W; Bricaud, Annick; Oelker, Julia; Peeken, Ilka; Gentili, Bernard; Rozanov, Vladimir V; Bracher, Astrid (2017): Global data sets of Chlorophyll a concentration for diatoms, coccolithophores (haptophytes) and cyanobacteria obtained from in situ observations and satellite retrievals. PANGAEA,, Supplement to: Losa, SN et al. (2017): Synergistic Exploitation of Hyper- and Multi-Spectral Precursor Sentinel Measurements to Determine Phytoplankton Functional Types (SynSenPFT). Frontiers in Marine Science, 4(203), 22 pp,

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

We derive the chlorophyll a concentration (Chla)for three main phytoplankton functional types (PFTs)-- diatoms, coccolithophores and cyanobacteria- by combining satellite multispectral-based information, being of a high spatial and temporal resolution, with retrievals based on high resolution of PFT absorption properties derived from hyperspectral measurements. The multispectral-based PFT Chla retrievals are based on a revised version of the empirical OC-PFT algorithm (Hirata et al. 2011) applied to the Ocean Colour Climate Change Initiative (OC-CCI) total Chla product. The PhytoDOAS analytical algorithm (Bracher et al. 2009, Sadeghi et al. 2012) is used with some modifications to derive PFT Chla from SCIAMACHY hyperspectral measurements. To combine synergistically these two PFT products (OC-PFT and PhytoDOAS), an optimal interpolation is performed for each PFT in every OC-PFT sub-pixel within a PhytoDOAS pixel, given its Chla and its a priori error statistics. The synergistic product (SynSenPFT) is presented for the period of August 2002 ? March 2012 and evaluated against in situ HPLC pigment data and satellite information on phytoplankton size classes (PSC) (Brewin et al. 2010, Brewin et al. 2015) and the size fraction (Sf) by Ciotti and Bricaud (2006. The most challenging aspects of the SynSenPFT algorithm implementation are discussed. Perspectives on SynSenPFT product improvements and prolongation of the time series over the next decades by adaptation to Sentinel multi- and hyperspectral instruments are highlighted.
German Science Foundation (DFG), grant/award no. 268020496: TRR 172: ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms
Median Latitude: -15.247210 * Median Longitude: -158.242793 * South-bound Latitude: -78.043000 * West-bound Longitude: 146.631000 * North-bound Latitude: 89.965000 * East-bound Longitude: -41.813747
Date/Time Start: 1988-12-03T00:00:00 * Date/Time End: 2012-08-21T00:00:00
submitted: 2017-03-08
3 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: