Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

De Vleeschouwer, David; Dunlea, Ann G; Auer, Gerald; Anderson, Chloe H; Brumsack, Hans-Jürgen; de Loach, Aaron; Gurnis, Michael; Huh, Youngsook; Ishiwa, Takeshige; Jang, Kwangchul; Kominz, Michelle A; März, Christian; Schnetger, Bernhard; Murray, Richard W; Pälike, Heiko; Expedition 356 shipboard scientists (2017): A MATLAB algorithm for the quantification of NGR spectra. PANGAEA, https://doi.org/10.1594/PANGAEA.872654, Supplement to: De Vleeschouwer, D et al. (2017): Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution. Geochemistry, Geophysics, Geosystems, 18(3), 1053-1064, https://doi.org/10.1002/2016GC006715

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
During International Ocean Discovery Program (IODP) expeditions, shipboardgenerated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. [2013] quantified K, Th and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428- U1430, U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost.
Coverage:
Median Latitude: 8.625621 * Median Longitude: -179.851819 * South-bound Latitude: -39.310297 * West-bound Longitude: 117.623000 * North-bound Latitude: 57.556655 * East-bound Longitude: -84.225497
Date/Time Start: 2012-12-03T03:05:00 * Date/Time End: 2012-12-03T03:05:00
Size:
40 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding:

Datasets listed in this publication series

  1. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 323-U1341A. https://doi.org/10.1594/PANGAEA.873122
  2. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Inductively coupled plasma (ICP) analyses of IODP Site 323-U1341B. https://doi.org/10.1594/PANGAEA.872703
  3. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 323-U1341B. https://doi.org/10.1594/PANGAEA.873123
  4. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 323-U1341C. https://doi.org/10.1594/PANGAEA.873124
  5. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 323-U1343A. https://doi.org/10.1594/PANGAEA.873126
  6. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): X-ray fluorescence (XRF) analyses of IODP Hole 323-U1343A. https://doi.org/10.1594/PANGAEA.872638
  7. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 323-U1343C. https://doi.org/10.1594/PANGAEA.873127
  8. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 323-U1343E. https://doi.org/10.1594/PANGAEA.873128
  9. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): X-ray fluorescence (XRF) analyses of IODP Hole 323-U1343E. https://doi.org/10.1594/PANGAEA.872639
  10. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1366B. https://doi.org/10.1594/PANGAEA.873129
  11. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1366D. https://doi.org/10.1594/PANGAEA.873130
  12. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1366F. https://doi.org/10.1594/PANGAEA.873131
  13. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1367B. https://doi.org/10.1594/PANGAEA.873132
  14. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1367C. https://doi.org/10.1594/PANGAEA.873133
  15. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1367D. https://doi.org/10.1594/PANGAEA.873134
  16. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1367E. https://doi.org/10.1594/PANGAEA.873135
  17. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1368B. https://doi.org/10.1594/PANGAEA.873136
  18. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1368C. https://doi.org/10.1594/PANGAEA.873137
  19. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1368D. https://doi.org/10.1594/PANGAEA.873138
  20. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1368E. https://doi.org/10.1594/PANGAEA.873139
  21. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1368F. https://doi.org/10.1594/PANGAEA.873140
  22. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1369B. https://doi.org/10.1594/PANGAEA.873141
  23. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1369C. https://doi.org/10.1594/PANGAEA.873142
  24. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 329-U1369E. https://doi.org/10.1594/PANGAEA.873143
  25. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 344-U1414A. https://doi.org/10.1594/PANGAEA.873162
  26. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Inductively coupled plasma (ICP) analyses of IODP Site 346-U1428A. https://doi.org/10.1594/PANGAEA.872959
  27. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 346-U1428A. https://doi.org/10.1594/PANGAEA.873163
  28. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Inductively coupled plasma (ICP) analyses of IODP Site 346-U1429A. https://doi.org/10.1594/PANGAEA.872960
  29. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 346-U1429A. https://doi.org/10.1594/PANGAEA.873164
  30. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 346-U1429B. https://doi.org/10.1594/PANGAEA.873174
  31. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 346-U1429C. https://doi.org/10.1594/PANGAEA.873175
  32. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Inductively coupled plasma (ICP) analyses of IODP Site 346-U1430A. https://doi.org/10.1594/PANGAEA.872961
  33. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 346-U1430A. https://doi.org/10.1594/PANGAEA.873167
  34. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 346-U1430B. https://doi.org/10.1594/PANGAEA.873168
  35. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 346-U1430C. https://doi.org/10.1594/PANGAEA.873169
  36. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Inductively coupled plasma (ICP) analyses of IODP Site 356-U1463. https://doi.org/10.1594/PANGAEA.872962
  37. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 356-U1463B. https://doi.org/10.1594/PANGAEA.873170
  38. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 356-U1463C. https://doi.org/10.1594/PANGAEA.873171
  39. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): Quantifying potassium (K), uranium (U) and thorium (Th) of IODP Site 356-U1463D. https://doi.org/10.1594/PANGAEA.873172
  40. De Vleeschouwer, D; Dunlea, AG; Auer, G et al. (2017): (Supporting Information) MATLAB algorithm for the quantification of NGR spectra. https://doi.org/10.1594/PANGAEA.872588