Allin, Joshua R; Hunt, James E; Talling, Peter J; Clare, Michael A; Pope, Ed; Masson, Douglas G (2017): Age determination, hemipelagic intervals and turbidite analysis from different sediment cores of the Nazare Canyon, offshore Portugal [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.871260, Supplement to: Allin, JR et al. (2016): Different frequencies and triggers of canyon filling and flushing events in Nazaré Canyon, offshore Portugal. Marine Geology, 371, 89-105, https://doi.org/10.1016/j.margeo.2015.11.005
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
Submarine canyons are one of the most important pathways for sediment transport into ocean basins. For this reason, understanding canyon architecture and sedimentary processes has importance for sediment budgets, carbon cycling, and geohazard assessment. Despite increasing knowledge of turbidity current triggers, the down-canyon variability in turbidity current frequency within most canyon systems is not well constrained. New AMS radiocarbon chronologies from canyon sediment cores illustrate significant variability in turbidity current frequency within Nazaré Canyon through time. Generalised linear models and Cox proportional hazards models indicate a strong influence of global sea level on the frequency of turbidity currents that fill the canyon. Radiocarbon ages from basin sediment cores indicate that larger, canyon-flushing turbidity currents reaching the Iberian Abyssal Plain have a significantly longer average recurrence interval than turbidity currents that fill the canyon. The recurrence intervals of these canyon-flushing turbidity currents also appear to be unaffected by long-term changes in global sea level. Furthermore, canyon-flushing and canyon-filling have very different statistical distributions of recurrence intervals. This indicates that the factors triggering, and thus controlling the frequency of canyon-flushing and canyon-filling events are very different. Canyon-filling appears to be predominantly triggered by sediment instability during sea level lowstand, and by storm and nepheloid transport during the present day highstand. Canyon-flushing exhibits time-independent behaviour. This indicates that a temporally random process, signal shredding, or summation of non-random processes that cannot be discerned from a random signal, are triggering canyon flushing events.
Further details:
Masson, Douglas G; Huvenne, Veerle A I; de Stigter, Henko; Arzola, Raquel; LeBas, T P (2011): Sedimentary processes in the middle Nazaré Canyon. Deep Sea Research Part II: Topical Studies in Oceanography, 58(23-24), 2369-2387, https://doi.org/10.1016/j.dsr2.2011.04.003
Coverage:
Median Latitude: 40.203487 * Median Longitude: -11.611866 * South-bound Latitude: 39.496300 * West-bound Longitude: -13.656500 * North-bound Latitude: 40.927667 * East-bound Longitude: -9.908700
Date/Time Start: 2005-08-03T21:37:00 * Date/Time End: 2008-08-26T16:27:00
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Size:
5 datasets
Download Data
Datasets listed in this publication series
- Allin, JR; Hunt, JE; Talling, PJ et al. (2017): (Supplementary Table S1) Age model measurements for hemipelagic intervals from sediment core JC27-46 in Nazare Canyon, offshore Portugal. https://doi.org/10.1594/PANGAEA.871255
- Allin, JR; Hunt, JE; Talling, PJ et al. (2017): (Supplementary Table S1) Projected ages for turbidites from sediment core JC27-46 in Nazare Canyon, offshore Portugal. https://doi.org/10.1594/PANGAEA.871259
- Allin, JR; Hunt, JE; Talling, PJ et al. (2017): (Supplementary Table S1) Hemipelagic thicknesses and radiocaron age information from sediment core JC27-46 in Nazare Canyon, offshore Portugal. https://doi.org/10.1594/PANGAEA.871258
- Allin, JR; Hunt, JE; Talling, PJ et al. (2017): (Table 1) Age determination from different sediment cores in Nazare Canyon, offshore Portugal. https://doi.org/10.1594/PANGAEA.871250
- Allin, JR; Hunt, JE; Talling, PJ et al. (2017): (Table 2) Turbidites and their projected ages from sediment core JC27-51 in Nazare Canyon, offshore Portugal. https://doi.org/10.1594/PANGAEA.871252