Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Sultana, Rumana; Casareto, Beatriz E; Sohrin, Rumi; Suzuki, Toshiyuki; Alam, Md Shafiul; Fujimura, Hiroyuki; Suzuki, Yoshimi (2016): Response of subtropical coastal sediment systems of Okinawa, Japan, to experimental warming and high pCO2 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.870707, Supplement to: Sultana, R et al. (2016): Response of Subtropical Coastal Sediment Systems of Okinawa, Japan, to Experimental Warming and High pCO2. Frontiers in Marine Science, 3, https://doi.org/10.3389/fmars.2016.00100

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Increasing seawater temperatures and CO2 levels associated with climate change affect the shallow marine ecosystem function. In this study, the effects of elevated seawater temperature and partial pressure of CO2 (pCO2) on subtropical sediment systems of mangrove, seagrass, and coral reef lagoon habitats of Okinawa, Japan, were examined. Sediment and seawater from each habitat were exposed to four pCO2-temperature treatments, including ambient pCO2- ambient temperature, ambient pCO2-high temperature (ambient temperature + 4°C), high pCO2 (936 ppm)-ambient temperature, and high pCO2-high temperature. Parameters including primary production, nutrient flux, pigment content, photosynthetic community composition, and bacterial abundance were examined. Neither high temperature nor high pCO2 alone impacted mangrove and seagrass sediment primary production significantly (Tukey's test, P > 0.05). However, the combined stress significantly (Tukey's test, P < 0.01) increased primary production in these two habitats. In sediments from the coral reef lagoon, single and combined stress treatments induced a shift from heterotrophy to autotrophy. Significant increases in net primary production (Tukey's test, P < 0.01), and gross primary production (Tukey's test, P < 0.05) under the combined stress suggested that benthic microalgae in mangrove and seagrass sediments were more responsive to high temperature and pCO2 conditions than those in coral reef lagoon sediments. Additionally, combined stress significantly increased the sediment chlorophyll a content (Tukey's test, P < 0.05) in all habitats. These increases were associated with increased net primary production, indicating that combined stress stimulates primary production activity by the photosynthetic benthic microalgae in all habitats. Diatom activity increased, as silicate uptake increased in all habitats. Microbial abundance significantly increased under the combined stress treatment (Tukey's test, P < 0.01), but did not exceed autotrophic activity. Respiration did not change significantly in any of the three habitats (Tukey's test, P > 0.05) under the combined stress, suggesting that heterotrophic processes were less affected by the combined stress than autotrophic processes. In summary, mangrove and seagrass sediments minimize the negative impacts of elevated temperature and pCO2 via increased primary production and carbon storage. Lagoonal sediments also act as a carbon sink under temperature and ocean acidification stress.
Keyword(s):
Benthos; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Coast and continental shelf; Entire community; Laboratory experiment; North Pacific; Other metabolic rates; Primary production/Photosynthesis; Respiration; Soft-bottom community; Temperate; Temperature
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Proye, Aurélien; Soetaert, Karline; Rae, James (2016): seacarb: seawater carbonate chemistry with R. R package version 3.1. https://cran.r-project.org/package=seacarb
Coverage:
Median Latitude: 26.661110 * Median Longitude: 127.905557 * South-bound Latitude: 26.633330 * West-bound Longitude: 127.850000 * North-bound Latitude: 26.700000 * East-bound Longitude: 128.000000
Event(s):
Bise_seagrass * Latitude: 26.700000 * Longitude: 127.866670 * Method/Device: Experiment (EXP)
Sesoko_reef * Latitude: 26.650000 * Longitude: 127.850000 * Method/Device: Experiment (EXP)
Yagachi_Island * Latitude: 26.633330 * Longitude: 128.000000 * Method/Device: Experiment (EXP)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2017-01-12.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEventCasareto, Beatriz E
2TypeTypeCasareto, Beatriz Estudy
3HabitatHabitatCasareto, Beatriz E
4TreatmentTreatCasareto, Beatriz E
5Light modeL modeCasareto, Beatriz E
6Nitrite and nitrate, fluxNO2+NO3 fluxµmol/cm2/hCasareto, Beatriz E
7Nitrite and nitrate, flux, standard deviationNO2+NO3 flux std dev±Casareto, Beatriz E
8Ammonium, flux[NH4]+ fluxµmol/cm2/hCasareto, Beatriz E
9Ammonium, flux, standard deviation[NH4]+ flux std dev±Casareto, Beatriz E
10Phosphate, fluxPO4 fluxµmol/cm2/hCasareto, Beatriz E
11Phosphate, flux, standard deviationPO4 flux std dev±Casareto, Beatriz E
12Silicate, fluxSi(OH)4 fluxµmol/m2/hCasareto, Beatriz E
13Silicate, flux, standard deviationSi(OH)4 flux std dev±Casareto, Beatriz E
14Chlorophyll a, fluxChl a fluxµg/m2/hCasareto, Beatriz E
15Chlorophyll a, flux, standard deviationChl a flux std dev±Casareto, Beatriz E
16Fucoxanthin, fluxFuco fluxµg/m2/hCasareto, Beatriz E
17Fucoxanthin, flux, standard deviationFuco flux std dev±Casareto, Beatriz E
18Zeaxanthin, fluxZea fluxµg/m2/hCasareto, Beatriz E
19Zeaxanthin, flux, standard deviationZea flux std dev±Casareto, Beatriz E
20beta-Carotene, fluxb-Car fluxµg/m2/hCasareto, Beatriz E
21beta-Carotene, flux, standard deviationb-Car flux std dev±Casareto, Beatriz E
22Chlorophyll b, fluxChl b fluxµg/m2/hCasareto, Beatriz E
23Chlorophyll b, flux, standard deviationChl b flux std dev±Casareto, Beatriz E
24Chlorophyll c2, fluxChl c2 fluxµg/m2/hCasareto, Beatriz E
25Chlorophyll c2, flux, standard deviationChl c2 flux std dev±Casareto, Beatriz E
26Oxygen, fluxO2 fluxmmol/m2/hCasareto, Beatriz E
27Oxygen, flux, standard deviationO2 flux std dev±Casareto, Beatriz E
28Gross primary production of carbonGPP Cµg/m2/hCasareto, Beatriz E
29Gross primary production, standard deviationGOX std dev±Casareto, Beatriz E
30Net primary production of carbonNPP Cµg/m2/hCasareto, Beatriz E
31Net primary production of carbon, standard deviationNPP C std dev±Casareto, Beatriz E
32Respiration rate, carbonResp Cµg/m2/hCasareto, Beatriz E
33Respiration rate, carbon dioxide, standard deviationResp CO2 std dev±Casareto, Beatriz E
34Change in bacterial abundanceChange bact abund#/cm2/dayCasareto, Beatriz Esediment
35Change in bacterial abundance, standard deviationChange bact abund std dev±Casareto, Beatriz Esediment
36Change in bacterial abundanceChange bact abund#/cm2/dayCasareto, Beatriz Eseawater
37Change in bacterial abundance, standard deviationChange bact abund std dev±Casareto, Beatriz Eseawater
38pHpHCasareto, Beatriz EPotentiometricNBS scale
39pH, standard deviationpH std dev±Casareto, Beatriz EPotentiometricNBS scale
40Alkalinity, totalATµmol/kgCasareto, Beatriz EPotentiometric titration
41Alkalinity, total, standard deviationAT std dev±Casareto, Beatriz EPotentiometric titration
42Temperature, waterTemp°CCasareto, Beatriz E
43Temperature, water, standard deviationTemp std dev±Casareto, Beatriz E
44SalinitySalCasareto, Beatriz E
45Salinity, standard deviationSal std dev±Casareto, Beatriz E
46Carbonate ion[CO3]2-µmol/kgCasareto, Beatriz ECalculated using CO2SYS
47Carbonate ion, standard deviation[CO3]2- std dev±Casareto, Beatriz ECalculated using CO2SYS
48Bicarbonate ion[HCO3]-µmol/kgCasareto, Beatriz ECalculated using CO2SYS
49Bicarbonate ion, standard deviation[HCO3]- std dev±Casareto, Beatriz ECalculated using CO2SYS
50Carbon dioxideCO2µmol/kgCasareto, Beatriz ECalculated using CO2SYS
51Carbon dioxide, standard deviationCO2 std dev±Casareto, Beatriz ECalculated using CO2SYS
52Carbon, inorganic, dissolvedDICµmol/kgCasareto, Beatriz ECalculated using CO2SYS
53Carbon, inorganic, dissolved, standard deviationDIC std dev±Casareto, Beatriz ECalculated using CO2SYS
54Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmCasareto, Beatriz ECalculated using CO2SYS
55Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Casareto, Beatriz ECalculated using CO2SYS
56Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
57pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
58Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
59Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
60Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
61Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
62Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
63Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
64Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
65Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
3156 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)