Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Moros, Matthias; Endler, Rudolf; Lackschewitz, Klas Sven; Wallrabe-Adams, Hans-Joachim; Mienert, Jürgen; Lemke, Wolfram (1997): (Table 2) Age determination of sediment cores LO09/21-2 and SO82_4-2 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.868816, Supplement to: Moros, M et al. (1997): Physical properties of Reykjanes Ridge sediments and their linkage to high-resolution Greenland Ice Sheet Project 2 ice core data. Paleoceanography, 12(5), 687-695, https://doi.org/10.1029/97PA02030

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Five gravity cores taken from the Reykjanes Ridge have been used to establish a link between sediment physical properties and atmospheric records documented by d18O variations in Greenland ice cores over the last 45,000 calendar years. Marine Gamma Ray Attenuation Porosity Evaluator density and magnetic susceptibility variations could be linked with the ice core Dansgaard-Oeschger and Bond cycles. This is supported by ice-rafted detritus (IRD), grain size, the quartz/feldspar ratio, and carbonate, isotopic, and foraminiferal records. The covariation of the sediment physical properties and d18O in Greenland ice indicates a coupling of atmospheric temperature and paleocirculation variations. Gradual reduced bottom currents (Iceland-Scotland Overflow Water) and enhanced iceberg discharges have been reconstructed for cold atmospheric periods relative to interstadial times. In the study area the magnetic susceptibility signal is not related to the ice-rafted detritus input but most probably reflects the variations of the Iceland-Scotland Overflow Water intensity transporting titanomagnetite into the Reykjanes Ridge region.
Further details:
Bard, Edouard; Arnold, Maurice; Fairbanks, Richard G; Hamelin, Bruno (1993): Thorium-230/uranium-234 and carbon-14 ages obtained by mass spectrometry on corals. Radiocarbon, 35(1), 191-199, https://doi.org/10.1017/S0033822200013886
Coverage:
Median Latitude: 59.018917 * Median Longitude: -30.615917 * South-bound Latitude: 58.942000 * West-bound Longitude: -30.753167 * North-bound Latitude: 59.095833 * East-bound Longitude: -30.478667
Date/Time Start: 1992-10-20T00:00:00 * Date/Time End: 1993-09-11T00:00:00
Minimum DEPTH, sediment/rock: 0.01 m * Maximum DEPTH, sediment/rock: 4.50 m
Event(s):
LO09/21-2  * Latitude: 58.942000 * Longitude: -30.753167 * Date/Time: 1993-09-11T00:00:00 * Elevation: -1437.0 m * Recovery: 5.68 m * Campaign: LO09 * Basis: Professor Logachev * Method/Device: Gravity corer (Kiel type) (SL)
SO82_4-2  * Latitude: 59.095833 * Longitude: -30.478667 * Date/Time: 1992-10-20T00:00:00 * Elevation: -1503.0 m * Campaign: SO82 (REYKJANES-RÜCKEN) * Basis: Sonne * Method/Device: Kasten corer (KAL)
Size:
84 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Event

Depth sed [m]

Dated material

Age dated [ka]

Age dated std dev [±]

Cal age [ka BP]

Comm

Lab label
LO09/21-2 1.70Neogloboquadrina pachyderma s.16.020.1919.025Calender years = 1.24 * (14C age) - 840 [Bard et al., 1993]AAR-1935
LO09/21-22.40Neogloboquadrina pachyderma s.19.590.1723.178Calender years = -5.85 * 10**-6 (14C age) + 1.39 * (14C age) - 1807 [E. Bard, pers. com.]AAR-1936
LO09/21-23.80Neogloboquadrina pachyderma s.27.500.4231.994Calender years = -5.85 * 10**-6 (14C age) + 1.39 * (14C age) - 1807 [E. Bard, pers. com.]AAR-1804
LO09/21-24.50Neogloboquadrina pachyderma s.31.750.4836.428Calender years = -5.85 * 10**-6 (14C age) + 1.39 * (14C age) - 1807 [E. Bard, pers. com.]AAR-1937
SO82_4-2 0.01Globigerina bulloides5.840.076.402Calender years = 1.24 * (14C age) - 840 [Bard et al., 1993]AAR-1559
SO82_4-20.93Globigerina bulloides10.460.0912.130Calender years = 1.24 * (14C age) - 840 [Bard et al., 1993]AAR-1894
SO82_4-21.01Neogloboquadrina pachyderma s.11.320.1413.197Calender years = 1.24 * (14C age) - 840 [Bard et al., 1993]AAR-1680
SO82_4-21.31Neogloboquadrina pachyderma s.13.270.1915.615Calender years = 1.24 * (14C age) - 840 [Bard et al., 1993]AAR-1681
SO82_4-21.56Neogloboquadrina pachyderma s.15.900.1518.876Calender years = 1.24 * (14C age) - 840 [Bard et al., 1993]AAR-1682
SO82_4-22.16Neogloboquadrina pachyderma s.18.470.1921.871Calender years = -5.85 * 10**-6 (14C age) + 1.39 * (14C age) - 1807 [E. Bard, pers. com.]AAR-1683
SO82_4-22.84Neogloboquadrina pachyderma s.22.650.5426.675Calender years = -5.85 * 10**-6 (14C age) + 1.39 * (14C age) - 1807 [E. Bard, pers. com.]AAR-1560
SO82_4-23.58Globigerina bulloides27.600.3032.101Calender years = -5.85 * 10**-6 (14C age) + 1.39 * (14C age) - 1807 [E. Bard, pers. com.]AAR-1895
SO82_4-24.11Neogloboquadrina pachyderma s.32.920.7537.612Calender years = -5.85 * 10**-6 (14C age) + 1.39 * (14C age) - 1807 [E. Bard, pers. com.]AAR-1684
SO82_4-24.49Neogloboquadrina pachyderma s.34.150.6238.839Calender years = -5.85 * 10**-6 (14C age) + 1.39 * (14C age) - 1807 [E. Bard, pers. com.]AAR-1896