Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Drury, Anna Joy; John, Cédric M (2016): Exploring the potential of clumped isotope thermometry on coccolith-rich sediments as a sea surface temperature proxy. PANGAEA, https://doi.org/10.1594/PANGAEA.865019, Supplement to: Drury, AJ; John, CM (2016): Exploring the potential of clumped isotope thermometry on coccolith-rich sediments as a sea surface temperature proxy. Geochemistry, Geophysics, Geosystems, 17(10), 4092-4104, https://doi.org/10.1002/2016GC006459

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and d18O), or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (Uk'37). We examine clumped isotope (D47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The D47-derived temperatures from <63, <20, <10 and 2-5 µm size fractions of two equatorial Pacific late Miocene-early Pliocene sediment samples (c1; c2) range between ~18-29 {degree sign}C, with c1 temperatures consistently above c2. Removing the >63 µm fraction removes most non-mixed layer components; however, the D47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 µm) are removed during the size fraction separation process. The c1 and <63 µm c2 D47-derived temperatures are comparable to concurrent Uk'37 SSTs. The <20, <10 and 2-5 µm c2 D47-derived temperatures are consistently cooler than expected. The D47-Uk'37 temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 µm fraction (~53% by area), which potentially precipitated at bottom water temperatures of ~6 {degree sign}C . Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and timescale is undertaken.
Coverage:
Latitude: 2.507820 * Longitude: -117.969560
Size:
2 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text (use the following character encoding: )