Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Courtney, T; Ries, Justin B (2015): Impact of atmospheric pCO2, seawater temperature, and calcification rate on the delta 18O and delta 13C composition of echinoid calcite (Echinometra viridis) [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.862558, Supplement to: Courtney, T; Ries, JB (2015): Impact of atmospheric pCO2, seawater temperature, and calcification rate on the delta 18O and delta 13C composition of echinoid calcite (Echinometra viridis). Chemical Geology, 411, 228-239, https://doi.org/10.1016/j.chemgeo.2015.06.030

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta 18Oe, delta 18ODIC) and carbon (The tropical echinoid Echinometra viridis was reared in controlled laboratory experiments at temperatures of approximately 20°C and 30°C to mimic winter and summer temperatures and at carbon dioxide (CO2) partial pressures of approximately 487 ppm-v and 805 ppm-v to simulate current and predicted-end-of-century levels. Spine material produced during the experimental period and dissolved inorganic carbon (DIC) of the corresponding culture solutions were then analyzed for stable oxygen (delta18Oe, delta18ODIC) and carbon (delta13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (Delta delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.13Ce, delta13CDIC) isotopic composition. Fractionation of oxygen stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta18O = delta18Oe - delta18ODIC) was significantly inversely correlated with seawater temperature but not significantly correlated with atmospheric pCO2. Fractionation of carbon stable isotopes between the echinoid spines and DIC of their corresponding culture solutions (delta13C = delta13Ce - delta13CDIC) was significantly positively correlated with pCO2 and significantly inversely correlated with temperature, with pCO2 functioning as the primary factor and temperature moderating the pCO2-delta13C relationship. Echinoid calcification rate was significantly inversely correlated with both delta18O and delta13C, both within treatments (i.e., pCO2 and temperature fixed) and across treatments (i.e., with effects of pCO2 and temperature controlled for through ANOVA). Therefore, calcification rate and potentially the rate of co-occurring dissolution appear to be important drivers of the kinetic isotope effects observed in the echinoid spines. Study results suggest that echinoid delta18O monitors seawater temperature, but not atmospheric pCO2, and that echinoid delta13C monitors atmospheric pCO2, with temperature moderating this relationship. These findings, coupled with echinoids' long and generally high-quality fossil record, supports prior assertions that fossil echinoid delta18O is a viable archive of paleo-seawater temperature throughout Phanerozoic time, and that delta13C merits further investigation as a potential proxy of paleo-atmospheric pCO2. However, the apparent impact of calcification rate on echinoid delta18O and delta13C suggests that paleoceanographic reconstructions derived from these proxies in fossil echinoids could be improved by incorporating the effects of growth rate.
Keyword(s):
Animalia; Benthic animals; Benthos; Calcification/Dissolution; Coast and continental shelf; Containers and aquaria (20-1000 L or < 1 m**2); Echinodermata; Echinometra viridis; Laboratory experiment; North Atlantic; Single species; Temperate; Temperature
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-07-05.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1TypeTypeRies, Justin Bstudy
2SpeciesSpeciesRies, Justin B
3Registration number of speciesReg spec noRies, Justin B
4Uniform resource locator/link to referenceURL refRies, Justin BWoRMS Aphia ID
5Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetppmvRies, Justin B
6Temperature, waterTemp°CRies, Justin B
7Calcification rateCalc rate%Ries, Justin B
8δ18O, dissolved inorganic carbonδ18O DICRies, Justin B
9δ13C, dissolved inorganic carbonδ13C DIC‰ PDBRies, Justin B
10δ18O, calciteδ18O cal‰ PDBRies, Justin Bechinoid calcite
11δ13C, calciteδ13C cal‰ PDBRies, Justin Bechinoid calcite
12Δδ18OΔδ18ORies, Justin Bdifference between the echinoid calcite and DIC of the culture solution
13Δδ13CΔδ13C‰ PDBRies, Justin Bdifference between the echinoid calcite and DIC of the culture solution
14SalinitySalRies, Justin B
15Salinity, standard errorSal std e±Ries, Justin B
16Alkalinity, totalATµmol/lRies, Justin BPotentiometric titration
17Alkalinity, total, standard errorAT std e±Ries, Justin BPotentiometric titration
18Carbon, inorganic, dissolvedDICµmol/lRies, Justin BColorimetric
19Carbon, inorganic, dissolved, standard errorDIC std e±Ries, Justin BColorimetric
20Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
21pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
22Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
23Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
24Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
25Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
26Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
27Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
28Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
29Alkalinity, totalATµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
30Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
840 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML