Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Hofmann, Laurie C; Koch, Marguerite; de Beer, Dirk (2016): Oxygen, pH and calcium dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH and across a range of irradiances. PANGAEA, https://doi.org/10.1594/PANGAEA.862113, Supplement to: Hofmann, LC et al. (2016): Biotic control of surface pH and evidence of light-induced H+ pumping and Ca2+-H+ exchange in a tropical crustose coralline alga. PLoS ONE, 11(7), e0159057, https://doi.org/10.1371/journal.pone.0159057

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA.
Coverage:
Date/Time Start: 2015-03-26T00:00:00 * Date/Time End: 2015-05-05T00:00:00
Comment:
Contains pH raw data on the NBS scale (wrong sensor values were not removed). Please contact the PI (L. Hofmann) for further questions.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1DATE/TIMEDate/TimeHofmann, Laurie CGeocode
2Date/time endDate/time endHofmann, Laurie C
3File nameFile nameHofmann, Laurie C
4File sizeFile sizekByteHofmann, Laurie C
5Uniform resource locator/link to fileURL fileHofmann, Laurie C
Size:
28 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML