Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji (2017): Historical global map of NH4+ and NO3- application in synthetic nitrogen fertilizer, link to NetCDF files. PANGAEA, https://doi.org/10.1594/PANGAEA.861203, Supplement to: Nishina, K et al. (2017): Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer. Earth System Science Data, 9(1), 149-162, https://doi.org/10.5194/essd-9-149-2017

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH+4 (and NONO-3) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH+4 and/or NO-3-forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH+4/NO-3 ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010, doi:10.1175/2009EI288.1) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 Tg-N to 110 Tg-N during 1961-2010. On the other hand, the global NO-3 input started to decline after the late 1980s and the fraction of NO-3 in global N fertilizer decreased consistently from 35 % to 13 % over a 50-year period. NH+4 based fertilizers are dominant in most countries; however, the NH+4/NO-3 ratio in N fertilizer inputs shows clear differences temporally and geographically. This new map can be utilized as an input data to global model studies and bring new insights for the assessment of historical terrestrial N cycling changes.
Comment:
last update: 2017-07-26
Size:
32.5 MBytes

Download Data

Download dataset