Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Biswas, Haimanti; Jie, Jin; Li, Ying; Zhang, Guosen; Zhu, Zhuoyi; Wu, Ying; Zhang, Guoling; Li, Yanwei; Liu, Sumei; Zhang, Jing (2015): Response of a natural phytoplankton community from the Qingdao coast (Yellow Sea, China) to variable CO2 levels over a short-term incubation experiment [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.860225, Supplement to: Biswas, H et al. (2015): Response of a natural phytoplankton community from the Qingdao coast (Yellow Sea, China) to variable CO2 levels over a short-term incubation experiment. Current Science, 108(10), 1901-1909, https://www.currentscience.ac.in/Volumes/108/10/1901.pdf

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Since marine phytoplankton play a vital role in stabilizing earth's climate by removing significant amount of atmospheric CO2, their responses to increasing CO2 levels are indeed vital to address. The responses of a natural phytoplankton community from the Qingdao coast (NW Yellow Sea, China) was studied under different CO2 levels in microcosms. HPLC pigment analysis revealed the presence of diatoms as a dominant microalgal group; however, members of chlorophytes, prasinophytes, cryptophytes and cyanophytes were also present. delta 13CPOM values indicated that the phytoplankton community probably utilized bicarbonate ions as dissolved inorganic carbon source through a carbon concentration mechanism (CCM) under low CO2 levels, and diffusive CO2 uptake increased upon the increase of external CO2 levels. Although, considerable increase in phytoplankton biomass was noticed in all CO2 treatments, CO2-induced effects were absent. Higher net nitrogen uptake under low CO2 levels could be related to the synthesis of CCM components. Flow cytometry analysis showed slight reduction in the abundance of Synechococcus and pico-eukaryotes under the high CO2 treatments. Diatoms did not show any negative impact in response to increasing CO2 levels; however, chlorophytes revealed a reverse tend. Heterotrophic bacterial count enhanced with increasing CO2 levels and indicated higher abundance of labile organic carbon. Thus, the present study indicates that any change in dissolved CO2 concentrations in this area may affect phytoplankton physiology and community structure and needs further long-term study.
Keyword(s):
Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Coast and continental shelf; Community composition and diversity; Entire community; Laboratory experiment; North Pacific; Pelagos; Primary production/Photosynthesis; Temperate
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb
Comment:
The value of biological parameters under 3 pCO2 levels are the final day value. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-05-13.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
TypeTypeBiswas, Haimantistudy
TreatmentTreatBiswas, Haimanti
Chlorophyll aChl aµg/lBiswas, Haimanti
Chlorophyll a, standard deviationChl a std dev±Biswas, Haimanti
Carbon, organic, particulatePOCµmol/lBiswas, Haimanti
Carbon, organic, particulate, standard deviationPOC std dev±Biswas, Haimanti
Chlorophyll a/particulate organic carbon ratioChl a/POCBiswas, Haimanti
Chlorophyll a/particulate organic carbon ratio, standard deviationChl a/POC std dev±Biswas, Haimanti
Nitrogen, organic, particulatePONµmol/lBiswas, Haimanti
10 Nitrogen, organic, particulate, standard deviationPON std dev±Biswas, Haimanti
11 Phosphorus, organic, particulatePOPµmol/lBiswas, Haimanti
12 Particulate organic phosphorus, standard deviationPOP std dev±Biswas, Haimanti
13 Carbon/Nitrogen ratioC/NBiswas, Haimanti
14 Carbon/Nitrogen ratio, standard deviationC/N std dev±Biswas, Haimanti
15 Carbon/Phosphorus ratioC/PBiswas, Haimanti
16 Carbon/Phosphorus ratio, standard deviationC/P std dev±Biswas, Haimanti
17 Nitrogen/Phosphorus ratioN/PBiswas, Haimanti
18 Nitrogen/Phosphorus ratio, standard deviationN/P std dev±Biswas, Haimanti
19 Nitrogen, inorganic, dissolvedDINµmol/lBiswas, Haimanti
20 Nitrogen, inorganic, dissolved, standard deviationDIN std dev±Biswas, Haimanti
21 SilicateSi(OH)4µmol/lBiswas, Haimanti
22 Silicate, standard deviationSi(OH)4 std dev±Biswas, Haimanti
23 Phosphorus, inorganic, dissolvedDIPµmol/lBiswas, Haimanti
24 Phosphorus, inorganic, dissolved, standard deviationDIP std dev±Biswas, Haimanti
25 Nitrogen, inorganic, dissolved/Phosphorus, inorganic, dissolved ratioDIN/DIPBiswas, Haimanti
26 Nitrogen, inorganic, dissolved/Phosphorus, inorganic, dissolved ratio, standard deviationDIN/DIP std dev±Biswas, Haimanti
27 Nitrogen/Silicon ratioN/SiBiswas, Haimanti
28 Nitrogen/Silicon ratio, standard deviationN/Si std dev±Biswas, Haimanti
29 Carbon, organic, dissolvedDOCµmol/lBiswas, Haimanti
30 Carbon, organic, dissolved, standard deviationDOC std dev±Biswas, Haimanti
31 Dissolved inorganic nitrogen, uptakeDIN uptµmol/lBiswas, Haimanti
32 Dissolved inorganic nitrogen, uptake, standard deviationDIN upt std dev±Biswas, Haimanti
33 Silicate uptakeSi(OH)4 uptµmol/lBiswas, Haimanti
34 Silicon uptake, standard deviationSi upt std dev±Biswas, Haimanti
35 Phosphorus uptakeP uptµmol/lBiswas, Haimanti
36 Phosphorus uptake, standard deviationP upt std dev±Biswas, Haimanti
37 Silicon/Nitrogen uptake ratioSi/N uptBiswas, Haimanti
38 Silicon/Nitrogen uptake ratio, standard deviationSi/N upt std dev±Biswas, Haimanti
39 Nitrogen/Phosphorus uptake ratioN/P uptBiswas, Haimanti
40 Nitrogen/Phosphorus uptake ratio, standard deviationN/P upt std dev±Biswas, Haimanti
41 Silicon/phosphorus uptake ratioSi/P uptBiswas, Haimanti
42 Silicon/phosphorus uptake ratio, standard deviationSi/P upt std dev±Biswas, Haimanti
43 Consumption of carbon, inorganic, dissolvedDIC consumptµmol/lBiswas, Haimantinet
44 Consumption of carbon, inorganic, dissolved, standard deviationDIC consumpt std dev±Biswas, Haimantinet
45 Carbon, organic, dissolved + particulate, net productionNP DOC+POCµmol/lBiswas, Haimanti
46 Carbon, organic, dissolved + particulate, net production, standard deviationNP DOC+POC std dev±Biswas, Haimanti
47 δ13Cδ13C‰ PDBBiswas, Haimanti
48 δ13C, standard deviationδ13C std dev±Biswas, Haimanti
49 δ15Nδ15N‰ airBiswas, Haimanti
50 δ15N, standard deviationδ15N std dev±Biswas, Haimanti
51 Fucoxanthin/chlorophyll a ratioFuco/Chl aBiswas, Haimanti
52 Fucoxanthin/chlorophyll a ratio, standard devitationFuco/Chl a std dev±Biswas, Haimanti
53 Diatoxanthin indexDT indexBiswas, Haimanti
54 Diatoxanthin index, standard deviationDT index std dev±Biswas, Haimanti
55 Chlorophyll a/Chlorophyll b ratioChl a/Chl bBiswas, Haimanti
56 Violaxanthin/antheraxanthin ratioViola/AnthxBiswas, Haimanti
57 Violaxanthin/antheraxanthin ratio, standard deviationViola/Anthx std dev±Biswas, Haimanti
58 Lutein/chlorophyll a ratioLut/Chl aBiswas, Haimanti
59 Lutein/chlorophyll a ratio, standard deviationLut/Chl a std dev±Biswas, Haimanti
60 Violaxanthin/Zeaxanthin ratioViola/ZeaBiswas, Haimanti
61 Violaxanthin/Zeaxanthin ratio, standard deviationViola/Zea std dev±Biswas, Haimanti
62 Neoxanthin/chlorophyll a ratioNeo/chl aBiswas, Haimanti
63 Neoxanthin/chlorophyll a ratio, standard deviationNeo/Chl a std dev±Biswas, Haimanti
64 Violaxanthin/chlorophyll a ratioViola/chl aBiswas, Haimanti
65 Violaxanthin/chlorophyll a ratio, standard deviationViola/Chl a std dev±Biswas, Haimanti
66 Bacteria, heterotrophicHBA#/mlBiswas, Haimanti
67 Bacteria, heterotrophic, standard deviationBact het std dev±Biswas, Haimanti
68 PicoeukaryotesPEuk#/mlBiswas, Haimanti
69 Picoeukaryotes, standard deviationPEuk std dev±Biswas, Haimanti
70 SynechococcusSynechococcus#/mlBiswas, Haimanti
71 Synechococcus spp., standard deviationSynechococcus spp. std dev±Biswas, Haimanti
72 Temperature, waterTemp°CBiswas, Haimanti
73 SalinitySalBiswas, Haimanti
74 Alkalinity, totalATµmol/kgBiswas, Haimantiinitial
75 Carbon, inorganic, dissolvedDICµmol/kgBiswas, Haimantiinitial
76 Alkalinity, totalATµmol/kgBiswas, Haimantifinal
77 Carbon, inorganic, dissolvedDICµmol/kgBiswas, Haimantifinal
78 Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
79 pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial,total scale
80 Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
81 Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
82 Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
83 Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
84 Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
85 Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
86 Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)initial
87 pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)final,total scale
88 Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
89 Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
90 Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
91 Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
92 Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
93 Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
94 Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)final
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
679 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Type
(study)

Treat

Chl a [µg/l]

Chl a std dev [±]

POC [µmol/l]

POC std dev [±]

Chl a/POC

Chl a/POC std dev [±]

PON [µmol/l]
10 
PON std dev [±]
11 
POP [µmol/l]
12 
POP std dev [±]
13 
C/N
14 
C/N std dev [±]
15 
C/P
16 
C/P std dev [±]
17 
N/P
18 
N/P std dev [±]
19 
DIN [µmol/l]
20 
DIN std dev [±]
21 
Si(OH)4 [µmol/l]
22 
Si(OH)4 std dev [±]
23 
DIP [µmol/l]
24 
DIP std dev [±]
25 
DIN/DIP
26 
DIN/DIP std dev [±]
27 
N/Si
28 
N/Si std dev [±]
29 
DOC [µmol/l]
30 
DOC std dev [±]
31 
DIN upt [µmol/l]
32 
DIN upt std dev [±]
33 
Si(OH)4 upt [µmol/l]
34 
Si upt std dev [±]
35 
P upt [µmol/l]
36 
P upt std dev [±]
37 
Si/N upt
38 
Si/N upt std dev [±]
39 
N/P upt
40 
N/P upt std dev [±]
41 
Si/P upt
42 
Si/P upt std dev [±]
43 
DIC consumpt [µmol/l]
(net)
44 
DIC consumpt std dev [±]
(net)
45 
NP DOC+POC [µmol/l]
46 
NP DOC+POC std dev [±]
47 
δ13C [‰ PDB]
48 
δ13C std dev [±]
49 
δ15N [‰ air]
50 
δ15N std dev [±]
51 
Fuco/Chl a
52 
Fuco/Chl a std dev [±]
53 
DT index
54 
DT index std dev [±]
55 
Chl a/Chl b
56 
Viola/Anthx
57 
Viola/Anthx std dev [±]
58 
Lut/Chl a
59 
Lut/Chl a std dev [±]
60 
Viola/Zea
61 
Viola/Zea std dev [±]
62 
Neo/chl a
63 
Neo/Chl a std dev [±]
64 
Viola/chl a
65 
Viola/Chl a std dev [±]
66 
HBA [#/ml]
67 
Bact het std dev [±]
68 
PEuk [#/ml]
69 
PEuk std dev [±]
70 
Synechococcus [#/ml]
71 
Synechococcus spp. std dev [±]
72 
Temp [°C]
73 
Sal
74 
AT [µmol/kg]
(initial)
75 
DIC [µmol/kg]
(initial)
76 
AT [µmol/kg]
(final)
77 
DIC [µmol/kg]
(final)
78 
CSC flag
79 
pH
(initial,total scale)
80 
CO2 [µmol/kg]
(initial)
81 
fCO2water_SST_wet [µatm]
(initial)
82 
pCO2water_SST_wet [µatm]
(initial)
83 
[HCO3]- [µmol/kg]
(initial)
84 
[CO3]2- [µmol/kg]
(initial)
85 
Omega Arg
(initial)
86 
Omega Cal
(initial)
87 
pH
(final,total scale)
88 
CO2 [µmol/kg]
(final)
89 
fCO2water_SST_wet [µatm]
(final)
90 
pCO2water_SST_wet [µatm]
(final)
91 
[HCO3]- [µmol/kg]
(final)
92 
[CO3]2- [µmol/kg]
(final)
93 
Omega Arg
(final)
94 
Omega Cal
(final)
laboratoryInitial day0.280.0429.557.030.000810.000303.820.9260.3320.0807.740.0489.1400.20811.520.0317.202.075.920.410.520.1333.75.52.900.151252.6
laboratorypCO2=460 µatm7.751.57130.0721.070.004950.0003610.530.9590.1890.03312.462.50691.61965.60856.699.614.461.402.230.070.020.01318.0222.02.010.671274.020322243201822411924158.0313.76417.71419.131839.62164.622.604.098.208.53259.01259.891690.80224.343.545.48
laboratorypCO2=640 µatm8.021.40138.1610.180.004830.0007610.480.4810.2160.05113.201.24671.981213.69250.3812.076.451.652.040.170.010.01542.0142.03.710.4914226.020322329215323672084157.9119.55593.61595.631996.96136.492.163.388.1211.39345.82346.991867.01205.933.255.03
laboratorypCO2=730 µatm5.480.99115.7112.710.004010.001088.910.3540.1460.03113.001.50820.054210.92262.4910.825.710.462.140.230.020.01342.0236.02.680.201301.720322306215323042004157.8622.20674.01676.302009.12121.681.923.048.0613.17399.89401.251882.44181.392.864.43
laboratorypCO2=460 µatm2.230.070.020.0112.741.413.70.10.5070.0060.2920.03525.163.007.290.0799.873.8010218.0220322243201822411924158.0313.76417.71419.131839.62164.622.604.098.208.53259.01259.891690.80224.343.545.48
laboratorypCO2=640 µatm2.040.170.010.019.551.653.90.20.5130.0100.4130.05918.653.477.560.4783.887.9011517.6620322329215323672084157.9119.55593.61595.631996.96136.492.163.388.1211.39345.82346.991867.01205.933.255.03
laboratorypCO2=730 µatm2.140.230.020.0111.490.463.80.20.5100.0150.3290.01322.530.327.400.2670.772.919112.0020322306215323042004157.8622.20674.01676.302009.12121.681.923.048.0613.17399.89401.251882.44181.392.864.43
laboratoryInitial day5.920.410.520.13-22.30.080.200.10
laboratorypCO2=460 µatm2.230.070.020.01-22.70.203.200.3520322243201822411924158.0313.76417.71419.131839.62164.622.604.098.208.53259.01259.891690.80224.343.545.48
laboratorypCO2=640 µatm2.040.170.010.01-23.40.032.950.7820322329215323672084157.9119.55593.61595.631996.96136.492.163.388.1211.39345.82346.991867.01205.933.255.03
laboratorypCO2=730 µatm2.140.230.020.01-24.40.153.100.7020322306215323042004157.8622.20674.01676.302009.12121.681.923.048.0613.17399.89401.251882.44181.392.864.43
laboratoryInitial day5.920.410.520.131.0040.21812.046
laboratorypCO2=460 µatm2.230.070.020.010.9960.1670.1190.0058.4142.6141.0671.3820.1271.3820.1270.0470.0050.0150.00320322243201822411924158.0313.76417.71419.131839.62164.622.604.098.208.53259.01259.891690.80224.343.545.48
laboratorypCO2=640 µatm2.040.170.010.011.2930.1860.0960.01813.9921.2730.4361.1330.2921.1330.2920.0280.0090.0110.00220322329215323672084157.9119.55593.61595.631996.96136.492.163.388.1211.39345.82346.991867.01205.933.255.03
laboratorypCO2=730 µatm2.140.230.020.011.2140.1640.1080.01111.2261.4440.1950.8710.1190.8710.1190.0360.0050.0110.00120322306215323042004157.8622.20674.01676.302009.12121.681.923.048.0613.17399.89401.251882.44181.392.864.43
laboratorypCO2=460 µatm2.230.070.020.013845213125826590447036651660120322243201822411924158.0313.76417.71419.131839.62164.622.604.098.208.53259.01259.891690.80224.343.545.48
laboratorypCO2=640 µatm2.040.170.010.014549172945626360336025206266220322329215323672084157.9119.55593.61595.631996.96136.492.163.388.1211.39345.82346.991867.01205.933.255.03
laboratorypCO2=730 µatm2.140.230.020.015045352378521280155030696484120322306215323042004157.8622.20674.01676.302009.12121.681.923.048.0613.17399.89401.251882.44181.392.864.43