Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Ikari, Matt J; Ito, Yoshihiro; Ujiie, Kohtaro; Kopf, Achim J (2015): Slip behavior in Tohoku fault zone samples at plate tectonic slip rates. PANGAEA, https://doi.org/10.1594/PANGAEA.858894, Supplement to: Ikari, MJ et al. (2015): Spectrum of slip behaviour in Tohoku fault zone samples at plate tectonic slip rates. Nature Geoscience, 8(11), 870-874, https://doi.org/10.1038/ngeo2547

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
During the 2011 Tohoku-oki earthquake, extremely extensive coseismic slip ruptured shallow parts of the Japan Trench subduction zone and breached the sea floor^1, 2. This part of the subduction zone also hosts slow slip events (SSE)^3, 4. The fault thus seems to have a propensity for slip instability or quasi-instability that is unexpected on the shallow portions of important fault zones. Here we use laboratory experiments to slowly shear samples of rock recovered from the Tohoku-oki earthquake fault zone as part of the Japan Trench Fast Drilling Project. We find that infrequent perturbations in rock strength appear spontaneously as long-term SSE when the samples are sheared at a constant rate of about 8.5 cm yr^-1, equivalent to the plate-convergence rate. The shear strength of the rock drops by 3 to 6%, or 50 kPa to 120 kPa, over about 2 to 4 h. Slip during these events reaches peak velocities of up to 25 cm yr^-1, similar to SSE observed in several circum-Pacific subduction zones. Furthermore, the sheared samples exhibit the full spectrum of fault-slip behaviours, from fast unstable slip to slow steady creep, which can explain the wide range of slip styles observed in the Japan Trench. We suggest that the occurrence of SSE at shallow depths may help identify fault segments that are frictionally unstable and susceptible to large coseismic slip propagation.
Coverage:
Latitude: 37.938905 * Longitude: 143.913473
Date/Time Start: 2012-05-11T00:00:00 * Date/Time End: 2012-05-24T00:00:00
Size:
4 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: