Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Neubauer, Thomas A; Georgopoulou, Elisavet; Harzhauser, Mathias; Mandic, Oleg; Kroh, Andreas (2016): Measurements of gastropods shell sizes from 23 fossil and extant long-lived lakes [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.858575

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Aim: To investigate shell size variation among gastropod faunas of fossil and recent long-lived European lakes and discuss potential underlying processes.
Location: 23 long-lived lakes of the Miocene to Recent of Europe.
Methods: Based on a dataset of 1412 species of both fossil and extant lacustrine gastropods, we assessed differences in shell size in terms of characteristics of the faunas (species richness, degree of endemism, differences in family composition) and the lakes (surface area, latitude and longitude of lake centroid, distance to closest neighbouring lake) using multiple and linear regression models. Because of a strong species-area relationship, we used resampling to determine whether any observed correlation is driven by that relationship.
Results: The regression models indicated size range expansion rather than unidirectional increase or decrease as the dominant pattern of size evolution. The multiple regression models for size range and maximum and minimum size were statistically significant, while the model with mean size was not. Individual contributions and linear regressions indicated species richness and lake surface area as best predictors for size changes. Resampling analysis revealed no significant effects of species richness on the observed patterns. The correlations are comparable across families of different size classes, suggesting a general pattern.
Main conclusions: Among the chosen variables, species richness and lake surface area are the most robust predictors of shell size in long-lived lake gastropods. Although the most outstanding and attractive examples for size evolution in lacustrine gastropods derive from lakes with extensive durations, shell size appears to be independent of the duration of the lake as well as longevity of a species. The analogue of long-lived lakes as 'evolutionary islands' does not hold for developments of shell size because different sets of parameters predict size changes.
Related to:
Neubauer, Thomas A; Georgopoulou, Elisavet; Harzhauser, Mathias; Mandic, Oleg; Kroh, Andreas (2016): Predictors of shell size in long-lived lake gastropods. Journal of Biogeography, 43(10), 2062-2074, https://doi.org/10.1111/jbi.12777
Neubauer, Thomas A; Harzhauser, Mathias; Kroh, A (2013): Phenotypic evolution in a fossil gastropod species lineage: evidence for adaptive radiation? Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 117-126, https://doi.org/10.1016/j.palaeo.2012.11.025
Comment:
The shell size dataset includes the measurements (shell height, shell width) for 1412 species/subspecies of 23 Miocene to recent long-lived European lakes that have been used for the analyses in the paper. The other four tables are the basis for Figure 6 in the paper, that is, measurements and clade ranks for Valencienniinae lineages 1 and 2 and the original measurements (deriving from Neubauer et al. 2013) plus analytic summary (maximum size per age and clade ranks) for the Melanopsis lineage.
Size:
134.4 kBytes

Download Data

Download dataset