Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Lauretano, Vittoria; Hilgen, Frederik J; Zachos, James C; Lourens, Lucas Joost (2016): Early Eocene benthic carbon isotope data of ODP Site 208-1263 [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.857763, Supplement to: Lauretano, V et al. (2016): Astronomically tuned age model for the early Eocene carbon isotope events: A new high-resolution d13C benthic record of ODP Site 1263 between ~49 and ~54 Ma. Newsletters on Stratigraphy, 49(2), 383-400, https://doi.org/10.1127/nos/2016/0077

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
The early Eocene represents a time of major changes in the global carbon cycle and fluctuations in global temperatures on both short- and long-time scales. These perturbations of the ocean-atmosphere system have been linked to orbital forcing and changes in net organic carbon burial, but accurate age models are required to disentangle the various forcing mechanisms and assess causal relationships. Discrepancies between the employed astrochronological and radioisotopic dating techniques prevent the construction of a robust time frame between ~49 and ~54 Ma. Here we present an astronomically tuned age model for this critical time period based on a new high-resolution benthic d13C record of ODP Site 1263, SE Atlantic. First, we assess three possible tuning options to the stable long-eccentricity cycle (405-kyr), starting from Eocene Thermal Maximum 2 (ETM2, ~54 Ma). Next we compare our record to the existing bulk carbonate d13C record from the equatorial Atlantic (Demerara Rise, ODP Site 1258) to evaluate our three initial age models and compare them with alternative age models previously established for this site. Finally, we refine our preferred age model by expanding our tuning to the 100-kyr eccentricity cycle of the La2010d solution. This solution appears to accurately reflect the long- and short-term eccentricity-related patterns in our benthic d13C record of ODP Site 1263 back to at least 52 Ma and possibly to 54 Ma. Our time scale not only aims to provide a new detailed age model for this period, but it may also serve to enhance our understanding of the response of the climate system to orbital forcing during this super greenhouse period as well as trends in its background state.
Project(s):
Coverage:
Latitude: -28.532950 * Longitude: 2.779567
Date/Time Start: 2003-03-29T00:00:00 * Date/Time End: 2003-04-05T00:00:00
Event(s):
208-1263 * Latitude: -28.532950 * Longitude: 2.779567 * Date/Time Start: 2003-03-29T00:00:00 * Date/Time End: 2003-04-05T00:00:00 * Elevation: -2717.1 m * Penetration: 1261.5 m * Recovery: 709.5 m * Location: Walvis Ridge, Southeast Atlantic Ocean * Campaign: Leg208 * Basis: Joides Resolution * Method/Device: Composite Core (COMPCORE) * Comment: 93 cores; 777.9 m cored; 483.6 m drilled; 91.2 % recovery
Size:
2 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: