Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Swan, Chantal; Vogt, Meike; Gruber, Nicolas; Laufkoetter, Charlotte (2015): A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments. PANGAEA, https://doi.org/10.1594/PANGAEA.855412, Supplement to: Swan, C et al. (2015): A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments. Deep Sea Research Part I: Oceanographic Research Papers, https://doi.org/10.1016/j.dsr.2015.12.002

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°x1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32 ± 5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. These publicly accessible results will guide future parameterizations of marine ecosystem models exploring the link between phytoplankton community structure and marine biogeochemical cycles.
Related to:
Peloquin, Jill M; Swan, Chantal; Gruber, Nicolas; Vogt, Meike; Claustre, Hervé; Ras, Josephine; Uitz, Julia; Barlow, Raymond G; Behrenfeld, Michael J; Bidigare, Robert R; Dierssen, Heidi; Ditullio, Giacomo; Fernández, Emilio; Gallienne, Chris; Gibb, Stuart; Goericke, Ralf; Harding, Lawrence; Head, Erica J H; Holligan, Patrick M; Hooker, Stanford B; Karl, David; Landry, Michael R; Letelier, R; Llewellyn, Carol; Lomas, Michael W; Lucas, Michael; Mannino, Antonio; Marty, Jean-Claude; Mitchell, Greg; Muller-Karger, Frank E; Nelson, Norman; O'Brien, Colleen J; Prezelin, B; Repeta, Daniel J; Smith, Walker O Jr; Smythe-Wright, Denise; Stumpf, Richard; Subramaniam, Ajit; Suzuki, Koji; Trees, Charles; Vernet, Maria; Wasmund, Norbert; Wright, Simon (2013): The MAREDAT global database of high performance liquid chromatography marine pigment measurements. Earth System Science Data, 5, 109-123, https://doi.org/10.5194/essd-5-109-2013
Source data set:
Peloquin, Jill M; Swan, Chantal; Gruber, Nicolas; Vogt, Meike; Claustre, Hervé; Ras, Josephine; Uitz, Julia; Barlow, Raymond G; Behrenfeld, Michael J; Bidigare, Robert R; Dierssen, Heidi; Ditullio, Giacomo; Fernández, Emilio; Gallienne, Chris; Gibb, Stuart; Goericke, Ralf; Harding, Lawrence; Head, Erica J H; Holligan, Patrick M; Hooker, Stanford B; Karl, David; Landry, Michael R; Letelier, R; Llewellyn, Carol; Lomas, Michael W; Lucas, Michael; Mannino, Antonio; Marty, Jean-Claude; Mitchell, Greg; Muller-Karger, Frank E; Nelson, Norman; O'Brien, Colleen J; Prezelin, B; Repeta, Daniel J; Smith, Walker O Jr; Smythe-Wright, Denise; Stumpf, Richard; Subramaniam, Ajit; Suzuki, Koji; Trees, Charles; Vernet, Maria; Wasmund, Norbert; Wright, Simon (2013): The MAREDAT global database of high performance liquid chromatography marine pigment measurements - Gridded data product (NetCDF) - Contribution to the MAREDAT World Ocean Atlas of Plankton Functional Types. PANGAEA, https://doi.org/10.1594/PANGAEA.793246
Comment:
The attached zip file contains two NetCDF files submitted by the authors: One with absolute and one with relative values of phytoplankton-specific abundance in terms of total chlorophyll a (mg/m3).
Size:
131.7 kBytes

Download Data

Download dataset