Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Abed, Raeid M M; Ramette, Alban; Hübner, Vera; De Deckker, Patrick; de Beer, Dirk (2012): (Table 1) Geographical location and nutrient composition of saline lake sediments (SLS) and nearby adjacent biological soil crusts (BSC) identified as potential dust sources [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.853765, Supplement to: Abed, RMM et al. (2012): Microbial diversity of eolian dust sources from saline lake sediments and biological soil crusts in arid Southern Australia. FEMS Microbiology Ecology, 80(2), 294-304, https://doi.org/10.1111/j.1574-6941.2011.01289.x

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
While microbial communities of aerosols have been examined, little is known about their sources. Nutrient composition and microbial communities of potential dust sources, saline lake sediments (SLS) and adjacent biological soil crusts (BSC), from Southern Australia were determined and compared with a previously analyzed dust sample. Multivariate analyses of fingerprinting profiles indicated that the bacterial communities of SLS and BSC were different, and these differences were mainly explained by salinity. Nutrient concentrations varied among the sites but could not explain the differences in microbial diversity patterns. Comparison of microbial communities with dust samples showed that deflation selects against filamentous cyanobacteria, such as the Nostocales group. This could be attributed to the firm attachment of cyanobacterial filaments to soil particles and/or because deflation occurs mainly in disturbed BSC, where cyanobacterial diversity is often low. Other bacterial groups, such as Actinobacteria and the spore-forming Firmicutes, were found in both dust and its sources. While Firmicutes-related sequences were mostly detected in the SLS bacterial communities (10% of total sequences), the actinobacterial sequences were retrieved from both (11–13%). In conclusion, the potential dust sources examined here show highly diverse bacterial communities and contain nutrients that can be transported with aerosols. The obtained fingerprinting and sequencing data may enable back tracking of dust plumes and their microorganisms.
Coverage:
Median Latitude: -31.857541 * Median Longitude: 137.115789 * South-bound Latitude: -34.155400 * West-bound Longitude: 134.989833 * North-bound Latitude: -30.123667 * East-bound Longitude: 143.011667
Minimum DEPTH, sediment/rock: m * Maximum DEPTH, sediment/rock: m
Event(s):
Dutton_C4 (C4) * Latitude: -31.798483 * Longitude: 137.186033 * Location: South Australia * Method/Device: Multiple investigations (MULT) * Comment: biological soil crusts
Dutton_S1 (S1) * Latitude: -31.984833 * Longitude: 137.848317 * Location: South Australia * Method/Device: Multiple investigations (MULT) * Comment: saline lake sediments
Edward_C24 (C24) * Latitude: -31.596217 * Longitude: 135.431450 * Location: South Australia * Method/Device: Multiple investigations (MULT) * Comment: biological soil crusts
Comment:
saline lake sediments (SLS), adjacent biological soil crusts (BSC)
Size:
320 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML