Not logged in
Data Publisher for Earth & Environmental Science

Stemmler, Irene; Hense, Inga; Quack, Birgit; Maier-Reimer, Ernst (2014): Simulated Methyl iodide emission and concentration using the ocean biogeochemistry model MPIOM/HAMOCC forced by OMIP data. Max-Planck-Institut für Meteorologie, Hamburg, PANGAEA,, Supplement to: Stemmler, I et al. (2014): Methyl iodide production in the open ocean. Biogeosciences, 11(16), 4459-4476,

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg/yr. On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean).
Model: MPIOM/HAMOCC plus halocarbon chemistryMPIOM/HAMOCC:
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1File contentContentStemmler, Irene
2File nameFile nameStemmler, Irene
3Uniform resource locator/link to fileURL fileStemmler, Irene
4File sizeFile sizekByteStemmler, Irene
24 data points

Download Data (login required)

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML