Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Thiele, Stefan; Fuchs, Bernhard M; Amann, Rudolf; Iversen, Morten Hvitfeldt; Wommack, K Eric (2015): Relative abundances and microbial numbers of organisms from water sample station GeoB15704-2. doi:10.1594/PANGAEA.846188,
Supplement to: Thiele, S et al. (2015): Colonization in the Photic Zone and Subsequent Changes during Sinking Determine Bacterial Community Composition in Marine Snow. Applied and Environmental Microbiology, 81(4), 1463-1471, doi:10.1128/AEM.02570-14

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be "inherited" from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.
Coverage:
Latitude: 20.585500 * Longitude: -18.005500
Date/Time Start: 2011-05-01T00:57:00 * Date/Time End: 2011-05-01T00:57:00
Size:
2 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text (use the following character encoding: )