Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Corliss, Bruce H; McCorkle, Daniel C; Higdon, David M (2015): (Table 3) Oxygen and carbon isotopic record of living (Rose Bengal Stained) benthic foraminifera of North Atlantic surface sediments [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.844864, Supplement to: Corliss, BH et al. (2002): A time series study of the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography, 17(3), 8-1-8-27, https://doi.org/10.1029/2001PA000664

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Variation of the d13C of living (Rose Bengal stained) deep-sea benthic foraminifera is documented from two deep-water sites (~2430 and ~3010 m) from a northwest Atlantic Ocean study area 275 km south of Nantucket Island. The carbon isotopic data of Hoeglundina elegans and Uvigerina peregrina from five sets of Multicorer and Soutar Box Core samples taken over a 10-month interval (March, May, July, and October 1996 and January 1997) are compared with an 11.5 month time series of organic carbon flux to assess the effect of organic carbon flux on the carbon isotopic composition of dominant taxa. Carbon isotopic data of Hoeglundina elegans at 3010 m show 0.3 per mil lower mean values following an organic carbon flux maximum resulting from a spring phytoplankton bloom. This d13C change following the spring bloom is suggested to be due to the presence of a phytodetritus layer on the seafloor and the subsequent depletion of d13C in the pore waters within the phytodetritus and overlying the sediment surface. Carbon isotopic data of H. elegans from the 2430 m site show an opposite pattern to that found at 3010 m with a d13C enrichment following the spring bloom. This different pattern may be due to spatial variation in phytodetritus deposition and resuspension or to a limited number of specimens recovered from the March 1996 cruise. The d13C of Uvigerina peregrina at 2430 m shows variation over the 10 month interval, but an analysis of variance shows that the variability is more consistent with core and subcore variability than with seasonal changes. The isotopic analyses are grouped into 100 µm size classes on the basis of length measurements of individual specimens to evaluate d13C ontogenetic changes of each species. The data show no consistent patterns between size classes in the d13C of either H. elegans or U. peregrina. These results suggest that variation in organic carbon flux does not preferentially affect particular size classes, nor do d13C ontogenetic changes exist within the >250 to >750 µm size range for these species at this locality. On the basis of the lack of ontogenetic changes a range of sizes of specimens from a sample can be used to reconstruct d13C in paleoceanographic studies. The prediction standard deviation, which is composed of cruise, core, subcore, and residual (replicate) variability, provides an estimate of the magnitude of variability in fossil d13C data; it is 0.27 per mil for H. elegans at 3010 m and 0.4 per mil for U. peregrina at the 2430 m site. Since these standard deviations are based on living specimens, they should be regarded as minimum estimates of variability for fossil data based on single specimen analyses. Most paleoceanographic reconstructions are based on the analysis of multiple specimens, and as a result, the standard error would be expected to be reduced for any particular sample. The reduced standard error resulting from the analysis of multiple specimens would result in the seasonal and spatial variability observed in this study having little impact on carbon isotopic records.
Coverage:
Median Latitude: 39.041038 * Median Longitude: -70.247136 * South-bound Latitude: 38.752500 * West-bound Longitude: -70.538830 * North-bound Latitude: 39.521170 * East-bound Longitude: -70.078500
Date/Time Start: 1996-03-01T00:00:00 * Date/Time End: 1997-01-01T00:00:00
Minimum DEPTH, sediment/rock: 0.0005 m * Maximum DEPTH, sediment/rock: 0.0025 m
Event(s):
EN281-1 * Latitude: 38.772500 * Longitude: -70.086500 * Date/Time: 1996-03-01T00:00:00 * Elevation: -3009.0 m * Location: North Atlantic * Method/Device: Soil combustion (SC)
EN281-2 * Latitude: 38.786500 * Longitude: -70.078500 * Date/Time: 1996-03-01T00:00:00 * Elevation: -3005.0 m * Location: North Atlantic * Method/Device: Soil combustion (SC)
EN281-3 * Latitude: 39.518330 * Longitude: -70.538830 * Date/Time: 1996-03-01T00:00:00 * Elevation: -2433.0 m * Location: North Atlantic * Method/Device: Soil combustion (SC)
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEvent
2Latitude of eventLatitude
3Longitude of eventLongitude
4Elevation of eventElevationm
5Date/Time of eventDate/Time
6Sample code/labelSample labelCorliss, Bruce H
7DEPTH, sediment/rockDepth sedmGeocode
8Depth, top/minDepth topmCorliss, Bruce H
9Depth, bottom/maxDepth botmCorliss, Bruce H
10Size fractionSize fractionCorliss, Bruce H
11Hoeglundina elegans, δ13CH. elegans δ13C‰ PDBCorliss, Bruce HMass spectrometer Finnigan MAT 252
12Hoeglundina elegans, δ18OH. elegans δ18O‰ PDBCorliss, Bruce HMass spectrometer Finnigan MAT 252
13Uvigerina peregrina, δ13CU. peregrina δ13C‰ PDBCorliss, Bruce HMass spectrometer Finnigan MAT 252
14Uvigerina peregrina, δ18OU. peregrina δ18O‰ PDBCorliss, Bruce HMass spectrometer Finnigan MAT 252
15Planulina wuellerstorfi, δ13CP. wuellerstorfi δ13C‰ PDBCorliss, Bruce HMass spectrometer Finnigan MAT 252
16Planulina wuellerstorfi, δ18OP. wuellerstorfi δ18O‰ PDBCorliss, Bruce HMass spectrometer Finnigan MAT 252
Size:
3448 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)