Not logged in
Data Publisher for Earth & Environmental Science

Hoppmann, Mario; Nicolaus, Marcel; Hunkeler, Priska A; König-Langlo, Gert (2015): Field measurements of the atmosphere, ocean, sea ice and sub-ice platelet layer at Atka Bay in 2013. PANGAEA,, Supplement to: Hoppmann, Mario; Nicolaus, Marcel; Hunkeler, Priska A; Heil, Petra; Behrens, Lisa K; König-Langlo, Gert; Gerdes, Rüdiger (2015): Seasonal evolution of an ice-shelf influenced fast-ice regime, derived from an autonomous thermistor chain. Journal of Geophysical Research: Oceans, 120(3), 1703-1724,

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favourable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remain a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekström Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18 ± 0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4m, and an annual maximum thickness of 10m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 W/m**2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows sub-diurnal monitoring of the platelet-layer thickness.
Median Latitude: -70.599511 * Median Longitude: -8.066127 * South-bound Latitude: -70.650000 * West-bound Longitude: -8.250000 * North-bound Latitude: -70.575220 * East-bound Longitude: -7.482580
Date/Time Start: 1992-01-01T00:00:00 * Date/Time End: 2014-02-09T21:06:00
7 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text (use the following character encoding: )

Datasets listed in this Collection