Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Strobel, Anneli; Bennecke, Swaantje; Leo, Elettra; Mintenbeck, Katja; Pörtner, Hans-Otto; Mark, Felix Christopher (2014): Experiment: Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.829830, Supplement to: Strobel, A et al. (2012): Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2. Frontiers in Zoology, 9(1), 28, https://doi.org/10.1186/1742-9994-9-28

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Introduction
Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation.
Results
For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid-base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation.
Conclusion
The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid-base regulation. New set points of acid-base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2.
Further details:
Strobel, Anneli; Bennecke, Swaantje; Leo, Elettra; Helvey, J D; Pörtner, Hans-Otto; Mark, Felix Christopher (2012): Seawater carbonate chemistry, respiration, routine metabolic rate, extracellular pH, intracellular pH of the Antarctic fish Notothenia rossii in a laboratory experiment. PANGAEA, https://doi.org/10.1594/PANGAEA.831181
Funding:
German Research Foundation (DFG), grant/award no. 5472008: Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas
Coverage:
Latitude: -62.233330 * Longitude: -58.666660
Minimum Elevation: -35.0 m * Maximum Elevation: -35.0 m
Event(s):
PotterCove * Latitude: -62.233330 * Longitude: -58.666660 * Elevation: -35.0 m * Location: Potter Cove, King George Island, Antarctic Peninsula * Campaign: Jubany_Dallmann * Basis: Carlini/Jubany Station * Method/Device: Multiple investigations (MULT)
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
SpeciesSpeciesStrobel, Anneli
Treatment: temperatureT:temp°CStrobel, Anneliduring incubation
Carbon dioxideCO2ppmvStrobel, Anneliduring incubation
Length, totalTLmmStrobel, Anneli
Length, standardI stdmmStrobel, Anneli
Wet massWet mgStrobel, Anneli
GenderGenderStrobel, Anneli
Hepatosomatic indexHSIStrobel, Anneli
Condition factorCFStrobel, Anneli
10 HaematocritHt%Strobel, Anneli
11 LactateLactateµmol/lStrobel, Anneli
12 Osmotic concentrationOsmolaritymOsmol/lStrobel, Anneli
13 pH, extracellularpHeStrobel, Anneli
14 pH, intracellularpH inStrobel, Anneliliver
15 pH, intracellularpH inStrobel, Anneliwhite muscle
16 Respiration rate, oxygenResp O2µmol/g/hStrobel, AnneliWhole animal respiration
Size:
451 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Species

T:temp [°C]
(during incubation)

CO2 [ppmv]
(during incubation)

TL [mm]

I std [mm]

Wet m [g]

Gender

HSI

CF
10 
Ht [%]
11 
Lactate [µmol/l]
12 
Osmolarity [mOsmol/l]
13 
pHe
14 
pH in
(liver)
15 
pH in
(white muscle)
16 
Resp O2 [µmol/g/h]
(Whole animal respiration)
Notothenia rossii1390250214155male1.31.622<800450.01.47
Notothenia rossii1390291258297female1.21.7261200419.57.5407.1097.2601.79
Notothenia rossii1390379338660female1.71.735<800465.57.3507.0537.2600.65
Notothenia rossii1390331294418female1.81.625<800426.57.0817.3911.23
Notothenia rossii1390390355804female3.11.825<800429.51.69
Notothenia rossii1390394355757female3.51.735<800453.07.423
Notothenia rossii7390245212159female0.81.722<800400.07.4567.3662.28
Notothenia rossii7390280251229male0.91.428<800389.57.3957.2361.99
Notothenia rossii7390293261275female1.01.527<800400.07.4016.8917.2752.54
Notothenia rossii7390339303412female0.91.529<800358.07.5247.151
Notothenia rossii7390236206151male0.91.728<800400.07.2517.185
Notothenia rossii71960287254246female0.51.532<800402.57.5047.0047.3352.83
Notothenia rossii71960245214152female1.31.623<800422.07.5746.7807.4112.13
Notothenia rossii71960255226164female0.81.428<800400.07.6057.0851.95
Notothenia rossii71960318280343male0.91.636<800400.07.6067.0287.4053.13
Notothenia rossii71960264234206male0.81.628<800399.37.5017.0247.2962.44
Notothenia rossii71960355313504male0.71.636<800417.37.5146.7957.153
Notothenia rossii71960238214137male0.71.430<800386.07.8857.477
Notothenia rossii71960321283345male0.91.535<800360.57.5406.9397.269
Notothenia rossii71960283252222male0.91.436<800359.07.5146.8747.397
Notothenia rossii71960256227164female0.81.425<800373.57.4997.228
Notothenia rossii11960280250277female2.11.826<800355.07.6007.0527.3311.38
Notothenia rossii11960318284342female1.11.526<800428.07.5117.3127.3331.51
Notothenia rossii11960240213144male1.11.524<800433.57.4946.8657.4191.76
Notothenia rossii11960361322510female1.11.5301200396.37.4936.9717.3590.99
Notothenia rossii11960301266317female1.11.7321400428.37.4196.9527.4741.74
Notothenia rossii11960263233196female1.01.5321000351.57.4926.9827.3531.55
Notothenia rossii11960268236210male1.01.630<800380.07.6717.135
Notothenia rossii11960238211153male1.41.636900467.57.3956.9667.423
Notothenia rossii11960309274319female1.01.626<800365.07.4937.474