Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Arnold, Thomas; Mealey, Christopher; Leahey, Hannah; Miller, A Whitman; Hall-Spencer, Jason M; Milazzo, Marco; Maers, Kelly (2012): Ocean acidification and the loss of phenolic substances in marine plants. PANGAEA, https://doi.org/10.1594/PANGAEA.829532, Supplement to: Arnold, T et al. (2012): Ocean Acidification and the Loss of Phenolic Substances in Marine Plants. PLoS ONE, 7(4), e35107, https://doi.org/10.1371/journal.pone.0035107.t004

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Rising atmospheric CO2 often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO2 availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO2 enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO2 / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO2 vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO2 concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO2 vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO2 world.
Keyword(s):
Benthos; CO2 vent; Coast and continental shelf; Cymodocea nodosa; Field experiment; Field observation; Immunology/Self-protection; Mediterranean Sea; Mesocosm or benthocosm; North Atlantic; Plantae; Potamogeton perfoliatus; Ruppia maritima; Seagrass; Single species; Temperate; Tracheophyta
Further details:
Lavigne, Héloïse; Gattuso, Jean-Pierre (2011): seacarb: seawater carbonate chemistry with R. R package version 2.4. https://cran.r-project.org/package=seacarb
Funding:
Seventh Framework Programme (FP7), grant/award no. 265103: Mediterranean Sea Acidification in a Changing Climate
Coverage:
Median Latitude: 38.548303 * Median Longitude: -46.008570 * South-bound Latitude: 38.167070 * West-bound Longitude: -76.543940 * North-bound Latitude: 39.058810 * East-bound Longitude: 14.960870
Date/Time Start: 2010-05-01T00:00:00 * Date/Time End: 2011-07-31T00:00:00
Event(s):
Aeolian_archipelago  * Latitude: 38.419030 * Longitude: 14.960870 * Date/Time Start: 2011-05-01T00:00:00 * Date/Time End: 2011-05-31T00:00:00 * Method/Device: Experiment (EXP)
Severn_River  * Latitude: 39.058810 * Longitude: -76.543940 * Date/Time Start: 2011-06-01T00:00:00 * Date/Time End: 2011-07-31T00:00:00 * Method/Device: Experiment (EXP)
St_Mary_River  * Latitude: 38.167070 * Longitude: -76.442640 * Date/Time Start: 2010-05-01T00:00:00 * Date/Time End: 2010-07-31T00:00:00 * Method/Device: Experiment (EXP)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-02-14.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
Event labelEvent
SpeciesSpeciesArnold, Thomas
IdentificationIDArnold, Thomas
DistanceDistancemArnold, Thomasfrom seep
DistanceDistancemArnold, Thomasfrom injector
DescriptionDescriptionArnold, Thomastissue
ProanthocyanidinsProanthocyanidinsmg/gArnold, Thomas
Proanthocyanidins, standard errorProanthocyanidins std e±Arnold, Thomas
Phenolic acids, totalPh acidsmg/gArnold, Thomas
10 Phenolic acids, standard errorPh acids std e±Arnold, Thomas
11 Gallic acidC6H2(OH)mg/gArnold, Thomas
12 Gallic acid, standard errorC6H2(OH) std e±Arnold, Thomas
13 Syringaldehyde and 4-hydroxybenzoic acidSyr+4-HBAmg/gArnold, Thomas
14 Syringaldehyde and 4-hydroxybenzoic acid, standard errorSyr+4-HBA std e±Arnold, Thomas
15 VanillinVAmg/gArnold, Thomas
16 Vanillin, standard errorVA std e±Arnold, Thomas
17 AcetovanilloneC9H10O3mg/gArnold, Thomas
18 Acetovanillone, standard errorC9H10O3 std e±Arnold, Thomas
19 Coumaric acidC9H8O3mg/gArnold, Thomas
20 Coumaric acid, standard errorC9H8O3 std e±Arnold, Thomas
21 Ferulic acidC10H10O4mg/gArnold, Thomas
22 Ferulic acid, standard errorC10H10O4 std e±Arnold, Thomas
23 Phenolics, allPhmg/gArnold, Thomas
24 Phenolics, all, standard errorPh std e±Arnold, Thomas
25 Phenolics, reactive, totalPh reactivemg/gArnold, Thomas
26 Phenolics, reactive, total, standard errorPh reactive std e±Arnold, Thomas
27 SalinitySalArnold, Thomas
28 Salinity, standard errorSal std e±Arnold, Thomas
29 Temperature, waterTemp°CArnold, Thomas
30 pHpHArnold, ThomasNBS scale
31 pH, standard errorpH std e±Arnold, Thomas
32 Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmArnold, Thomas
33 Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard errorpCO2water_SST_wet std e±Arnold, Thomas
34 Alkalinity, totalATµmol/kgArnold, ThomasPotentiometric titration
35 Alkalinity, total, standard errorAT std e±Arnold, ThomasPotentiometric titration
36 Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
37 pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
38 Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
39 Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
40 Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
41 Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
42 Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
43 Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
44 Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
497 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Event

Species

ID

Distance [m]
(from seep)

Distance [m]
(from injector)

Description
(tissue)

Proanthocyanidins [mg/g]

Proanthocyanidins std e [±]

Ph acids [mg/g]
10 
Ph acids std e [±]
11 
C6H2(OH) [mg/g]
12 
C6H2(OH) std e [±]
13 
Syr+4-HBA [mg/g]
14 
Syr+4-HBA std e [±]
15 
VA [mg/g]
16 
VA std e [±]
17 
C9H10O3 [mg/g]
18 
C9H10O3 std e [±]
19 
C9H8O3 [mg/g]
20 
C9H8O3 std e [±]
21 
C10H10O4 [mg/g]
22 
C10H10O4 std e [±]
23 
Ph [mg/g]
24 
Ph std e [±]
25 
Ph reactive [mg/g]
26 
Ph reactive std e [±]
27 
Sal
28 
Sal std e [±]
29 
Temp [°C]
30 
pH
(NBS scale)
31 
pH std e [±]
32 
pCO2water_SST_wet [µatm]
33 
pCO2water_SST_wet std e [±]
34 
AT [µmol/kg]
(Potentiometric titration)
35 
AT std e [±]
(Potentiometric titration)
36 
CSC flag
(Calculated using seacarb afte...)
37 
pH
(total scale, Calculated using...)
38 
CO2 [µmol/kg]
(Calculated using seacarb afte...)
39 
fCO2water_SST_wet [µatm]
(Calculated using seacarb afte...)
40 
[HCO3]- [µmol/kg]
(Calculated using seacarb afte...)
41 
[CO3]2- [µmol/kg]
(Calculated using seacarb afte...)
42 
DIC [µmol/kg]
(Calculated using seacarb afte...)
43 
Omega Arg
(Calculated using seacarb afte...)
44 
Omega Cal
(Calculated using seacarb afte...)
Aeolian_archipelago Cymodocea nodosa (seagrass)Table 138013.621.664.660.590.500.050.070.011.020.653.060.880.290.160.380.18109.304.3937.160.078.110.01422.043.02549.629.6
Aeolian_archipelagoCymodocea nodosa (seagrass)Table 130010.170.735.301.450.410.030.050.012.571.382.271.470.160.050.310.11104.514.4837.120.067.840.04976.0269.52555.928.9
Aeolian_archipelagoCymodocea nodosa (seagrass)Table 126010.920.871.890.190.500.040.030.010.360.241.000.250.170.090.190.0993.124.2637.050.107.320.054009.01442.72592.548.3
St_Mary_River Ruppia maritima (seagrass)Table 25.005.920.990.310.053.430.3017.0025.08.40157.81467.0248.304.9157.31111.2146.81262.92.484.08
St_Mary_RiverRuppia maritima (seagrass)Table 20.404.690.680.180.011.670.2617.0025.08.00469.31444.0247.8914.6467.81283.965.91364.41.111.83
St_Mary_RiverRuppia maritima (seagrass)Table 20.052.410.310.150.011.880.3117.0025.06.906792.01455.0246.78211.16770.61441.25.71658.10.100.16
Severn_River Ruppia maritima (seagrass)Table 31.00Whole plants25.007.194.3028.38.260.02295.013.01122.00.5248.089.0294.1998.256.91064.11.041.81
Severn_RiverRuppia maritima (seagrass)Table 30.40Whole plants6.330.554.3028.37.820.04948.089.01122.00.5247.6128.9945.11077.220.61126.70.380.66
Severn_RiverRuppia maritima (seagrass)Table 31.00Shoots0.080.030.020.020.080.050.030.004.3028.38.260.02295.013.01122.00.5248.089.0294.1998.256.91064.11.041.81
Severn_RiverRuppia maritima (seagrass)Table 30.40Shoots0.270.100.050.030.050.02<0.010.030.004.3028.37.820.04948.089.01122.00.5247.6128.9945.11077.220.61126.70.380.66
Severn_RiverRuppia maritima (seagrass)Table 31.00Roots0.070.010.130.10<0.010.010.004.3028.38.260.02295.013.01122.00.5248.089.0294.1998.256.91064.11.041.81
Severn_RiverRuppia maritima (seagrass)Table 30.40Roots0.080.020.180.05<0.010.020.004.3028.37.820.04948.089.01122.00.5247.6128.9945.11077.220.61126.70.380.66
Severn_RiverRuppia maritima (seagrass)Table 41.00Shoots1.760.390.070.020.020.010.020.004.9029.58.110.02439.020.01145.010.0247.9313.0437.71046.844.81104.60.831.45
Severn_RiverRuppia maritima (seagrass)Table 40.40Shoots1.240.280.070.020.010.000.020.004.9029.57.940.02729.05.01145.010.0247.7221.5726.81081.928.81132.20.530.93
Severn_RiverRuppia maritima (seagrass)Table 40.05Shoots2.441.290.070.020.010.000.020.0024
Severn_RiverRuppia maritima (seagrass)Table 41.00Roots17.292.954.9029.58.110.02439.020.01145.010.0247.9313.0437.71046.844.81104.60.831.45
Severn_RiverRuppia maritima (seagrass)Table 40.40Roots22.811.464.9029.57.940.02729.05.01145.010.0247.7221.5726.81081.928.81132.20.530.93
Severn_RiverRuppia maritima (seagrass)Table 40.05Roots18.121.6824
Severn_RiverPotamogeton perfoliatus (seagrass)Table 41.00Whole plants0.650.442.130.694.9029.58.110.02439.020.01145.010.0247.9313.0437.71046.844.81104.60.831.45
Severn_RiverPotamogeton perfoliatus (seagrass)Table 40.40Whole plants0.780.354.9029.57.940.02729.05.01145.010.0247.7221.5726.81081.928.81132.20.530.93
Severn_RiverPotamogeton perfoliatus (seagrass)Table 40.05Whole plants0.100.100.850.33