Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Esper, Oliver; Gersonde, Rainer (2014): Diatom abundance in surface sediments of the Southern Ocean [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.828674, Supplement to: Esper, O; Gersonde, R (2014): New tools for the reconstruction of Pleistocene Antarctic sea ice. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 260-283, https://doi.org/10.1016/j.palaeo.2014.01.019

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Based on the quantitative analysis of diatom assemblages preserved in 274 surface sediment samples recovered in the Pacific, Atlantic and western Indian sectors of the Southern Ocean we have defined a new reference database for quantitative estimation of late-middle Pleistocene Antarctic sea ice fields using the transfer function technique. The Detrended Canonical Analysis (DCA) of the diatom data set points to a unimodal distribution of the diatom assemblages. Canonical Correspondence Analysis (CCA) indicates that winter sea ice (WSI) but also summer sea surface temperature (SSST) represent the most prominent environmental variables that control the spatial species distribution. To test the applicability of transfer functions for sea ice reconstruction in terms of concentration and occurrence probability we applied four different methods, the Imbrie and Kipp Method (IKM), the Modern Analog Technique (MAT), Weighted Averaging (WA), and Weighted Averaging Partial Least Squares (WAPLS), using logarithm-transformed diatom data and satellite-derived (1981–2010) sea ice data as a reference. The best performance for IKM results was obtained using a subset of 172 samples with 28 diatom taxa/taxa groups, quadratic regression and a three-factor model (IKM-D172/28/3q) resulting in root mean square errors of prediction (RMSEP) of 7.27% and 11.4% for WSI and summer sea ice (SSI) concentration, respectively. MAT estimates were calculated with different numbers of analogs (4, 6) using a 274-sample/28-taxa reference data set (MAT-D274/28/4an, -6an) resulting in RMSEP's ranging from 5.52% (4an) to 5.91% (6an) for WSI as well as 8.93% (4an) to 9.05% (6an) for SSI. WA and WAPLS performed less well with the D274 data set, compared to MAT, achieving WSI concentration RMSEP's of 9.91% with WA and 11.29% with WAPLS, recommending the use of IKM and MAT. The application of IKM and MAT to surface sediment data revealed strong relations to the satellite-derived winter and summer sea ice field. Sea ice reconstructions performed on an Atlantic- and a Pacific Southern Ocean sediment core, both documenting sea ice variability over the past 150,000 years (MIS 1 – MIS 6), resulted in similar glacial/interglacial trends of IKM and MAT-based sea-ice estimates. On the average, however, IKM estimates display smaller WSI and slightly higher SSI concentration and probability at lower variability in comparison with MAT. This pattern is a result of different estimation techniques with integration of WSI and SSI signals in one single factor assemblage by applying IKM and selecting specific single samples, thus keeping close to the original diatom database and included variability, by MAT. In contrast to the estimation of WSI, reconstructions of past SSI variability remains weaker. Combined with diatom-based estimates, the abundance and flux pattern of biogenic opal represents an additional indication for the WSI and SSI extent.
Related to:
Esper, Oliver; Gersonde, Rainer (2014): Quaternary surface water temperature estimations: New diatom transfer functions for the Southern Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 1-19, https://doi.org/10.1016/j.palaeo.2014.08.008
Funding:
German Research Foundation (DFG), grant/award no. 5472008: Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas
Coverage:
Median Latitude: -57.934039 * Median Longitude: -72.114875 * South-bound Latitude: -74.415300 * West-bound Longitude: -179.009600 * North-bound Latitude: -37.158300 * East-bound Longitude: 25.212600
Date/Time Start: 2000-02-17T20:49:00 * Date/Time End: 2010-01-20T11:20:00
Minimum DEPTH, sediment/rock: m * Maximum DEPTH, sediment/rock: m
Event(s):
GeoB6403-4 * Latitude: -40.013300 * Longitude: -23.365200 * Date/Time: 2000-02-17T20:49:00 * Elevation: -4226.0 m * Recovery: 0.14 m * Location: Central South Atlantic * Campaign: M46/4 * Basis: Meteor (1986) * Method/Device: MultiCorer (MUC) * Comment: 4 large, 4 small tubes filled
GeoB6404-3 * Latitude: -41.505800 * Longitude: -23.464800 * Date/Time: 2000-02-18T10:17:00 * Elevation: -4223.0 m * Recovery: 0.11 m * Location: Central South Atlantic * Campaign: M46/4 * Basis: Meteor (1986) * Method/Device: MultiCorer (MUC) * Comment: 4 large, 4 small tubes filled, CTD at 50 m
GeoB6405-8 * Latitude: -42.000000 * Longitude: -21.853200 * Date/Time: 2000-02-19T07:20:00 * Elevation: -3863.0 m * Recovery: 0.3 m * Location: Central South Atlantic * Campaign: M46/4 * Basis: Meteor (1986) * Method/Device: MultiCorer (MUC) * Comment: all tubes filled, IRD/dropstones
Comment:
Data are accessible on request: Rainer.Gersonde@awi.de
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEvent
2Latitude of eventLatitude
3Longitude of eventLongitude
4Elevation of eventElevationm
5DEPTH, sediment/rockDepth sedmGeocode
6Actinocyclus actinochilusA. actinochilus%Esper, OliverCounting, diatoms
7Actinocyclus curvatulusA. curvatulus%Esper, OliverCounting, diatoms
8Alveus marinusA. marinus%Esper, OliverCounting, diatoms
9Asteromphalus hookeriA. hookeri%Esper, OliverCounting, diatoms
10Asteromphalus hyalinusA. hyalinus%Esper, OliverCounting, diatoms
11Asteromphalus parvulusA. parvulus%Esper, OliverCounting, diatoms
12Azpeitia tabularis var. tabularisA. tabularis var. tabularis%Esper, OliverCounting, diatoms
13Azpeitia tabularis var egregiusA. tabularis var. egregius%Esper, OliverCounting, diatoms
14Chaetoceros spp.Chaetoceros spp.%Esper, OliverCounting, diatoms
15Corethron pennatumC. pennatum%Esper, OliverCounting, diatoms
16Eucampia antarcticaE. antarctica%Esper, OliverCounting, diatoms
17Fragilariopsis curtaF. curta%Esper, OliverCounting, diatoms
18Fragilariopsis cylindrusF. cylindrus%Esper, OliverCounting, diatoms
19Fragilariopsis doliolusF. doliolus%Esper, OliverCounting, diatoms
20Fragilariopsis kerguelensisF. kerguelensis%Esper, OliverCounting, diatoms
21Fragilariopsis obliquecostataF. obliquecostata%Esper, OliverCounting, diatoms
22Fragilariopsis rhombicaF. rhombica%Esper, OliverCounting, diatoms
23Fragilariopsis ritscheriF. ritscheri%Esper, OliverCounting, diatoms
24Fragilariopsis separandaF. separanda%Esper, OliverCounting, diatoms
25Fragilariopsis sublinearisF. sublinearis%Esper, OliverCounting, diatoms
26Fragilariopsis vanheurckiiF. vanheurckii%Esper, OliverCounting, diatoms
27Hemidiscus cuneiformisH. cuneiformis%Esper, OliverCounting, diatoms
28Nitzschia bicapitataN. bicapitata%Esper, OliverCounting, diatoms
29Navicula directaN. directa%Esper, OliverCounting, diatoms
30Nitzschia kolaczeckiiN. kolaczeckii%Esper, OliverCounting, diatoms
31Porosira pseudodenticulataP. pseudodenticulata%Esper, OliverCounting, diatoms
32Pseudo-nitzschia turgiduloidesP-n turgiduloides%Esper, OliverCounting, diatoms
33Rhizosolenia antennata forma antennataR. antennata f antennata%Esper, OliverCounting, diatoms
34Rhizosolenia antennata forma semispinaR. antennata f semispina%Esper, OliverCounting, diatoms
35Rhizosolenia bergoniiR. bergonii%Esper, OliverCounting, diatoms
36Rhizosolenia sp.Rhizosolenia sp.%Esper, OliverCounting, diatomssp. A
37Rhizosolenia spp.Rhizosolenia spp.%Esper, OliverCounting, diatoms
38Roperia tesselataR. tesselata%Esper, OliverCounting, diatoms
39Stellarima microtriasS. microtrias%Esper, OliverCounting, diatoms
40Stellarima stellarisS. stellaris%Esper, OliverCounting, diatoms
41Thalassionema nitzschioides forma 1T. nitzschioides f 1%Esper, OliverCounting, diatoms
42Thalassionema nitzschioides var. capitulataT. nitzschioides var. capitulata%Esper, OliverCounting, diatoms
43Thalassionema nitzschioides var. lanceolataT. nitzschioides var. lanceolata%Esper, OliverCounting, diatoms
44Thalassionema nitzschioides var. parvaT. nitzschioides var. parva%Esper, OliverCounting, diatoms
45Thalassionema spp.Thalassionema spp.%Esper, OliverCounting, diatoms
46Thalassiosira antarcticaT. antarctica%Esper, OliverCounting, diatoms
47Thalassiosira eccentricaT. eccentrica%Esper, OliverCounting, diatoms
48Thalassiosira gracilis var. expectaT. gracilis var. expecta%Esper, OliverCounting, diatoms
49Thalassiosira gracilis var. gracilisT. gracilis var. gracilis%Esper, OliverCounting, diatoms
50Thalassiosira gravidaT. gravida%Esper, OliverCounting, diatoms
51Thalassiosira lentiginosaT. lentiginosa%Esper, OliverCounting, diatoms
52Thalassiosira lineataT. lineata%Esper, OliverCounting, diatoms
53Thalassiosira oestrupiiT. oestrupii%Esper, OliverCounting, diatoms
54Thalassiosira oliveranaT. oliverana%Esper, OliverCounting, diatoms
55Thalassiosira spp.Thalassiosira spp.%Esper, OliverCounting, diatoms
56Thalassiosira symmetricaT. symmetrica%Esper, OliverCounting, diatoms
57Thalassiosira trifultaT. trifulta%Esper, OliverCounting, diatoms
58Thalassiosira tumidaT. tumida%Esper, OliverCounting, diatoms
59Thalassiothrix antarctica/longissima groupT. antarc/long gr%Esper, OliverCounting, diatoms
60Diatoms indeterminataDiatoms indet%Esper, OliverCounting, diatoms
61DiatomsDiatoms#Esper, OliverCounting, diatoms
Size:
4480 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)